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A What is Classification
Classification is a classic instance of supervised learning. The goal is to define a classifierwhich properly
assigns a new data point – let’s call it x – to the appropriate discrete class 𝐶𝑘 ∈ {𝐶1, … , 𝐶𝐾}. While
there are solutions to classification problems (i.e., nonparametric) which can be posedwhen the number
of classes, 𝐾 , is not known a priori or is otherwise unbounded, below we will assume that it not just
countable, but alsofinite and typically specifiedaspart of theproblemstatement. Notice that thediscrete
number of classes is what makes this a classification problem — the machine learning equivalent for
continuous data would generally be termed regression.
The process of solving a a classification problem involves two stages: Training – optimizing the classi-
fier using labeled training data, and Testing – evaluating the performance of the optimized classifier on
labeled testing data. Thus, we always divide our labeled data into two: a test data set to evaluate perfor-
mance and a separate training data set to ensure that the classifierwehave learned generalizes. (Aside - if
we didn’t do this, what would be the best performing classifier? A lookup table!) In cases when there are
hyperparameters to be optimized – for example in the model or statistical distribution of the data – we
can split the labeled data into three groups: a training set, a validation data set to pick the best model,
and a test set to evaluate final performance.
Classification is amachine learning problemwith awide variety of formulations and solutions. Below, we
review classification using Probabilistic Generative Models. For more information as well as a descrip-
tion of other classification approaches, a good resource is Pattern Recognition and Machine Learning by
Christopher Bishop.

Training Data

⇒

Decision Boundaries

Figure 1: The classification problem involves taking this training data and finding decision boundaries
for new data points.

B Classification Using Probabilistic Generative Models
In a classifier built using a probabilisitic generative model, there are two densities for each class 𝑘 ∈
{1, … , 𝐾}:

— the class-conditional density, Pr (x ∣ 𝐶𝑘) and

— the class priors Pr (𝐶𝑘)

1



ELEC548 Review of Classification

To train the classifier, we can use maximum likelihood parameter estimation. To use the classifier (i.e., on
test data), we chose the class which maximizes the a posteriori probability. In other words, we

— use Bayes’ rule to compute Pr (𝐶𝑘 ∣ x)

Pr (𝐶𝑘 ∣ x) = Pr (x ∣ 𝐶𝑘) Pr (𝐶𝑘)
Pr (x)

= Pr (x ∣ 𝐶𝑘) Pr (𝐶𝑘)
∑𝐾

𝑖=1 Pr (x ∣ 𝐶𝑖) Pr (𝐶𝑖)

(1)

— assign x to class 𝐶𝑚 where
𝑚 = argmax

𝑘
Pr (𝐶𝑘 ∣ x) (2)

B.1 Philosophy of Probabilistic Generative Models
Pr(x ∣ 𝐶𝑘) and Pr(𝐶𝑘) define a “probabilistic generativemodel” (or just “generativemodel”). Unlike other
classification schemes, this means that we can generate synthetic data using our model.
For example, imagine there are two classes and x ∈ ℝ2.

Pr(𝐶1) = 0.7
Pr(𝐶2) = 0.3

Pr(x ∣ 𝐶1) = 𝒩([2
1] , [1 0

0 1])

Pr(x ∣ 𝐶2) = 𝒩([1
2] , [1 0

0 1])

To generate synthetic data from this model begin by sampling from your handy Uniform[0, 1) random
number generator.

— If the uniform r. v. sample is < 0.7, draw a data sample from the Gaussian Pr(x ∣ 𝐶1).

— If the uniform r. v. sample is ≥ 0.7, draw a data sample from the Gaussian Pr(x ∣ 𝐶2).

(Note that this is the same as flipping a biased coin with probability of heads being 0.7.)

Philosophical point: If we generate synthetic data from our model and it resembles the real data we are
trying to classify, then we can have some confidence that our model of the data is good. This will mean
that our classifier will be functional and we can make inferences, decisions, etc.

B.2 Maximum Likelihood Parameter Estimation
Once we write down the training data likelihood, maximum likelihood parameter estimation is not com-
plicated. What is the data likelihood? Let us assumewe are given training data: {x𝑛, 𝑡𝑛}, 𝑛 = 1, … , 𝑁 ,
where for each of the 𝑁 training data, 𝑡𝑛 is the label for data point 𝑥𝑛. Then, the data likelihood is just:
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Data Likelihood

ℒ ≡ Pr ({x𝑛, 𝑡𝑛} ∣ 𝜽)

=
𝑁

∏
𝑖=1

𝐾
∑
𝑘=1

Pr (x𝑛 ∣ 𝐶𝑘, 𝜽) Pr (𝑡𝑛 = 𝑘 ∣ 𝐶𝑘, 𝜽) 𝛿(𝑡𝑛 = 𝑘)
(3)

where 𝜽 are the parameters of the densities and 𝛿(𝑡𝑛 = 𝑘) = 1 if 𝑡𝑛 = 𝑘 and
0 otherwise.

With a probabilistic generative model approach, in general, we will choose the parameters 𝜽 that maxi-
mize the data likelihood (maximum likelihood parameter estimation).

Example: Two classes with Gaussian class-conditional density and shared covariance

Training data: {x𝑛, 𝑡𝑛}, 𝑛 = 1, … , 𝑁 where

𝑡𝑛 = 1denotes membership in𝐶1and

𝑡𝑛 = 0denotes membership in𝐶2

Let Pr(𝑡𝑛 = 1) = Pr(𝐶1) = 𝜋
Pr(𝑡𝑛 = 0) = Pr(𝐶2) = (1 − 𝜋)

For a data point x𝑛 ∈ ℝ𝐷,

Pr(x𝑛, 𝐶1) = Pr(x𝑛 ∣ 𝐶1) Pr(𝐶1) = 𝒩(x𝑛 ∣ 𝝁1, 𝚺) ⋅ 𝜋
Pr(x𝑛, 𝐶2) = Pr(x𝑛 ∣ 𝐶2) Pr(𝐶2) = 𝒩(x𝑛 ∣ 𝝁2, 𝚺) ⋅ (1 − 𝜋)

The data likelihood for 𝑁 data points is then

ℒ ≡ Pr ({x𝑛, 𝑡𝑛} ∣ 𝜽)

=
𝑁

∏
𝑖=1

(𝒩(x𝑛 ∣ 𝝁1, 𝚺) ⋅ 𝜋)
𝑡𝑛(𝒩(x𝑛 ∣ 𝝁2, 𝚺) ⋅ 𝜋)

1−𝑡𝑛 (4)

logℒ =
𝑁

∑
𝑖=1

[𝑡𝑛 log (𝒩(x𝑛 ∣ 𝝁1, 𝚺)) + 𝑡𝑛 log(𝜋) +

(1 − 𝑡𝑛) log (𝒩(x𝑛 ∣ 𝝁2, 𝚺)) + (1 − 𝑡𝑛) log(1 − 𝜋)]
(5)

where

log (𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺)) =

− 1
2(x𝑛 − 𝝁𝑘)T𝚺−1(x𝑛 − 𝝁𝑘) − 1

2 log |𝚺| − 𝐷
2 log(2𝜋)

(6)
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(i) Find 𝜋

Our goal is to find the value of �which maximizes ℒ. Because of the way we’ve formulated the prob-
lem this is simple calculus - take the gradient and set equal to zero.

𝜕 logℒ
𝜕𝜋 =

𝑁
∑
𝑛=1

[𝑡𝑛 ⋅ 1
𝜋 − (1 − 𝑡𝑛) ⋅ 1

1 − 𝜋] = 0

1
𝜋

𝑁
∑
𝑛=1

𝑡𝑛 − 1
1 − 𝜋

𝑁
∑
𝑛=1

(1 − 𝑡𝑛) = 0

Let 𝑁1 = the number of points from 𝐶1 in the training data set: 𝑁1 = ∑𝑁
𝑛=1 𝑡𝑛, similarly 𝑁2 =

∑𝑁
𝑛=1(1 − 𝑡𝑛) = 𝑁 − 𝑁1 .

1
𝜋𝑁1 − 1

1 − 𝜋(𝑁 − 𝑁1) = 0
(1 − 𝜋)𝑁1 = 𝜋(𝑁 − 𝑁1)

𝜋 = 𝑁1
𝑁 (7)

What this means is that the maximum likelihood estimate of the class prior probabilities are just the
fraction of the training data assigned to each class.

(i) Find 𝝁1

Because of the way we’ve formulated the problem this is still simple calculus - take the gradient and
set equal to zero. If you’re not familiar with quadratic forms, take a look at the table of useful matrix
calculus identities at the end.

𝜕 logℒ
𝜕𝝁 = 𝜕

𝜕𝝁
𝑁

∑
𝑖=1

[𝑡𝑛 log (𝒩(x𝑛 ∣ 𝝁1, 𝚺)) + 𝑡𝑛 log(𝜋) +

(1 − 𝑡𝑛) log (𝒩(x𝑛 ∣ 𝝁2, 𝚺)) + (1 − 𝑡𝑛) log(1 − 𝜋)]
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Keeping only the terms that depend on 𝝁1:

= 𝜕
𝜕𝝁

𝑁
∑
𝑖=1

[𝑡𝑛 log (𝒩(x𝑛 ∣ 𝝁1, 𝚺)) ]

= 𝜕
𝜕𝝁

𝑁
∑
𝑖=1

[ − 𝑡𝑛
1
2(x𝑛 − 𝝁1)T𝚺−1(x𝑛 − 𝝁1)]

= −
𝑁

∑
𝑛=1

(𝑡𝑛
1
22𝚺−1(x𝑛 − 𝝁1)) = 0

⟹ 𝚺−1
𝑁

∑
𝑛=1

(𝑡𝑛x𝑛) = 𝚺−1(𝝁1
𝑁

∑
𝑛=1

𝑡𝑛)

𝝁1 = 1
𝑁1

𝑁
∑
𝑛=1

𝑡𝑛x𝑛 (8)

Similarly, for 𝝁2:

𝝁2 = 1
𝑁 − 𝑁1

𝑁
∑
𝑛=1

(1 − 𝑡𝑛)x𝑛 (9)

So what we’ve shown is that the maximum likelihood estimate of the class means are the sample
means of the training data assigned to each class.

(i) Find 𝚺
Keeping only the terms that depend on 𝚺:

logℒ =
𝑁

∑
𝑖=1

[𝑡𝑛 log (𝒩(x𝑛 ∣ 𝝁1, 𝚺)) + (1 − 𝑡𝑛) log (𝒩(x𝑛 ∣ 𝝁2, 𝚺)) ]

=
𝑁

∑
𝑖=1

[ − 𝑡𝑛(1
2(x𝑛 − 𝝁1)T𝚺−1(x𝑛 − 𝝁1) − 1

2 log |𝚺| )

− (1 − 𝑡𝑛)(1
2(x𝑛 − 𝝁2)T𝚺−1(x𝑛 − 𝝁2) − 1

2 log |𝚺| )]

=
𝑁

∑
𝑖=1

[ − 𝑡𝑛
2 ( Tr(𝚺−1(x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T) − log |𝚺| )

− 1 − 𝑡𝑛
2 ( Tr(𝚺−1(x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T) − log |𝚺| )]

𝜕ℒ
𝜕𝚺 =

𝑁
∑
𝑖=1

[ − 𝑡𝑛
2 ( − 𝚺−1(x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T𝚺−1 − 𝚺−1)

− 1 − 𝑡𝑛
2 ( − 𝚺−1(x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T𝚺−1 − 𝚺−1)]

= 0
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If we left and right multiply by 𝚺,

0 =
𝑁

∑
𝑖=1

[𝑡𝑛
2 ((x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T − 𝚺) + 1 − 𝑡𝑛

2 ((x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T − 𝚺)]

Note that the labels, {𝑡𝑛} select which of the two terms are actually calculated for each data point.
Also getting rid of the 1

2 terms, we can write this as

0 = ∑
𝑛∈𝐶1

((x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T − 𝚺) + ∑
𝑛∈𝐶2

((x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T − 𝚺)

0 = ∑
𝑛∈𝐶1

(x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T − 𝑁1𝚺 + ∑
𝑛∈𝐶2

(x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T − 𝑁2𝚺

Thus,

𝚺 = 𝑁1
𝑁 S1 + 𝑁2

𝑁 S2,where

S1 = 1
𝑁1

∑
𝑛∈𝐶1

(x𝑛 − 𝝁1)(x𝑛 − 𝝁1)T

S2 = 1
𝑁1

∑
𝑛∈𝐶2

(x𝑛 − 𝝁2)(x𝑛 − 𝝁2)T

(10)

So what we’ve shown is that the maximum likelihood estimate of the shared covariance matrix is
a weighted sum of the sample covariances of each of the classes (S1 and S2) where the weighting
by the fraction of points in each class. These three results make sense intuitively - absent any other
information, the sample estimates of the training data will be the best estimates of the parameters.

B.3 Test Phase: Assigning a new data point to a class
Once we have trained our model, we will want to assign data to the best class. As discussed in lecture,
aspects of the problem might imply cost/loss functions that would result in biased assignments. Absent
these considerations, the best assignment is themaximuma posteriori class.

MAP Assignment

�̂� = argmax
𝑚

Pr(𝐶𝑚 ∣ x)

= argmax
𝑚

Pr(x ∣ 𝐶𝑚) Pr(𝐶𝑚)
Pr(x)

= argmax
𝑚

Pr(x ∣ 𝐶𝑚) Pr(𝐶𝑚)

= argmax
𝑚

log Pr(x ∣ 𝐶𝑚) + log Pr(𝐶𝑚) (11)

where we’ve simplified by dropping the Pr(x) term, which is common to all classes.
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Example cont’d: Assignment for 2 Gaussians with shared covariance

For the example of two classes with class-conditional Gaussian densities with a shared covariance
matrix, we can further simplify by dropping all the terms which are common to both classes

�̂� = argmax
𝑚

Pr(𝐶𝑚 ∣ x)

= argmax
𝑚

log Pr(x ∣ 𝐶𝑚) + log Pr(𝐶𝑚)

= argmax
𝑚

(𝝁T𝑚𝚺−1x − 1
2𝝁T𝑚𝚺−1𝝁𝑚 + log Pr(𝐶𝑚))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

call this 𝑎𝑚(x)

(12)

This function creates a decision boundary in x space. What does it look like?

C Hyperplanes

A hyperplane is the 𝐷-dimensional generalization of a line
in 2-dimensional space and a plane in 3-dimensional space.
A hyperplane is defined as the set of all x such that

𝑦(x) = wTx + 𝑤0 = 0. (13)

Here,w determines the direction of the hyperplane and 𝑤0
determines the offset from the origin. An example in 2-
dimensions is to the right in Figure 2.

Figure 2: Hyperplane in 2D
Hyperplane Facts:

1. w is orthogonal to the hyperplane it defines.

Consider two points, x𝐴 and x𝐵 which lie on a hyperplane.

𝑦(x𝐴) = 𝑦(x𝐵) = 0
wTx𝐴 + 𝑤0 = wTx𝐵 + 𝑤0

wT (x𝐴 − x𝐵)⏟⏟⏟⏟⏟
a vector lying in the hyperplane

= 0

⟹ w is orthogonal to any vector lying in the hyperplane.

2. The normal distance from the origin to the hyperplane is − 𝑤0
‖w‖ .
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Let x be a point on the hyperplane

⟹ wTx + 𝑤0 = 0

The normal distance to the plane is the projection of this (arbitrary vector) x ontow

( w
‖w‖)Tx = − 𝑤0

‖w‖ //

3. The normal distance from any point x to the hyperplane is
𝑦(x)
‖w‖ .

Project x ontow, then subtract w
‖w‖ .

( w
‖w‖)Tx + w

‖w‖ = 𝑦(x)
‖w‖ //

D Linear Decision Boundaries
In our example problem, in equation (12), a point x is assigned to class 𝐶𝑘 if 𝑎𝑘(x) > 𝑎𝑗(x) for all 𝑗 ≠ 𝑘.
Thus, the decision boundary between class 𝐶𝑘 and class 𝐶𝑗 is given by 𝑎𝑘(x) = 𝑎𝑗(x).

As above, we can define 𝑎𝑘(x) = wT
𝑘x + 𝑤𝑘0, where

w𝑘 = 𝚺−1𝝁𝑘

𝑤𝑘0 = −1
2𝝁T

𝑘𝚺−1𝝁𝑘 + log Pr(𝐶𝑘)

The decision boundary is thus
(w𝑘 − w𝑗)Tx + (𝑤𝑘0 − 𝑤𝑗0) = 0. (14)

Note that this is the same form as (13), and thus the decision boundary in the case of Gaussian classeswith
a shared covariancematrix is a (𝐷 − 1)-dimensional hyperplane in ℝ𝐷.
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Appendix: Useful Matrix Properties and Calculus Identities

Derivative of a quadratic form for vector x

𝜕
𝜕xx

TAx = (A + AT) x
= 2Ax when A is symmetric

(15)

Derivative of a vector matrix product withmatrix X

𝜕
𝜕Xa

TXbT = a bT (16)

𝜕
𝜕Xa

TXTbT = b aT (17)

Derivative of the trace of amatrix product for matrix X

𝜕
𝜕X Tr(X−1A) = −X−TATX−T (18)

𝜕
𝜕X Tr(XXTA) = X(A + AT) (19)

Derivative of the determinant of X

𝜕
𝜕X log |X| = X−T (20)

Invariance of matrix trace to rotation

Tr(ABCD…) = Tr(BCD…A) = Tr(CD…AB) = … (21)

You will find more on the wikipedia ”Matrix calculus” page or by searching for
the ”matrix reference manual” or “the matrix cookbook”.
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