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Dimensionality reduction is a very useful tool for visualizing and understanding data that are in a high
dimensional space. If we assume that most high dimensional data actually exist primarily in a lower di-
mensional space, the extra dimensions are a formof noise. Thus,many othermachine learning problems,
such as clustering, would bemore robustly be performed in the lower dimensional space. Dimensionality
reduction tools allow us to estimate the connection between higher dimensional data and lower dimen-
sional representations. A good reference for this topic is Chapter 12 of Bishop’s Pattern Recognition and
Machine Learning.

A. Principal Components Analysis

Data set: x𝑛 ∈ ℝ𝐷, 𝑛 = 1,… ,𝑁
Goal: Project data into a space with dimensionalty𝑀 < 𝐷while

maximizing the variance of the projected data.

Intution: Why dowewant tomaximize the variance? Imagine the corner case that in one dimension of our
data 𝑖, there is no variability at all (the x(𝑖)𝑛 are equal for all i). Then, that dimension is not particularly
useful and could be safely ignored as we look for interesting features. But in the new𝐷−1-dimensional
data, the variance would be the same as in the original data set (i.e., maximized for𝑀 = 𝐷− 1).
Principal Components Analysis starts with the sample covariance matrix, S.

S ≡ 1
𝑁

𝑁
∑
𝑛=1

(x𝑛 −𝝁)(x−𝝁)T, where𝝁 = 1
𝑁

𝑁
∑
𝑛=1

x𝑛

A.1 Diagonalization / “Eigendecomposition”

Any covariance matrix (symmetric, positive semidefinite) can be expressed as

S = U𝚲UT,

where the columns of U are othornormal and𝚲 is diagonal.
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Note that u1,…u𝐷 form an orthonormal basis forℝ𝐷. In other words, any point inℝ𝐷 can be expressed
as a linear combination of the u1,…u𝐷.

A.2 Principal Component directions

— The first PC direction, u1, captures the greatest data variance.

— The second PC direction (u2) captures the second greatest data variance and is orthogonal to u1.

— And so on...

Another way of saying that the
PC directions are a basis is that
they define a new set of coordinate axes. This

means that a data point x𝑛 ∈ ℝ2 = [𝑥
(1)
𝑛

𝑥(2)
𝑛

] can

equivalently be described in the new coordinate

system as z𝑛 = [𝑧
(1)
𝑛
𝑧(2)𝑛

].

How dowe relate x𝑛 and z𝑛?
In general, if we have two vectors, v and W, the projection of v onto W is

‖v‖ cos 𝜃 = ‖v‖‖W‖ cos 𝜃
‖W‖ = vTW

‖W‖ (1)
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A.3 Projecting into PCA dimensions

In order to project from our high-dimensional data space (x ∈ ℝ𝐷) into our lower dimensional PC space
(z ∈ ℝ𝑀)

𝑧(𝑖) = (x−𝝁)Tu𝑖, 𝑖 = 1,… ,𝑀 (2)

The coordinates in PC space are also called “PC scores”. Intuitively, this means that we center the high-
dimensional data, and then project onto the axes defined by the u𝑖’s (remember that ‖u𝑖‖ = 1, so the
denominator in (1) is 1). This is illustrated for𝐷 = 2 and𝑀 = 1 below.

If we define U𝑀 as the first 𝑀 columns of the eigenvector matrix U above (i.e., U𝑀 = [u1u2,… ,u𝑀]),
then we can write the projection in vector form

z = U𝑀
T(x−𝝁).

A.4 “Back-projecting” reduced dimensional data

In low-dimensional coordinates, the projection of x𝑛 is z𝑛. What does z𝑛 look like back in the original
coordinate system?

̂x𝑛 =
𝑀
∑
𝑖=1

𝑧(𝑖)𝑛 u𝑖 +𝝁 = U𝑀z (3)

Because we’ve initially projected x into a low-dimensional space, we call estimating ̂x𝑛 “projecting back
into the high-dimensional space.”

Thought question:

What is
𝐷
∑
𝑖=1

𝑧(𝑖)𝑛 u𝑖 +𝝁?

Answer: It’s just x𝑛!
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A.5 How to choose M?

Sowhenwe’re doingPCA, howdowechoosehowmanyeigenvectors to include inour lower dimensional
representation; what value of𝑀 < 𝐷 should we pick?

Eigendecompositions always sort the eigenvectors by eigenvalue. So, if we plot the eigenvalue “spec-
trum” of S, we can look for an “elbow”.

The typical instruction is to choose 𝑀 to be the number of eigenvalues above the elbow. So in the ex-
ample above, one would choose𝑀 = 2. In many cases, one does not actually see a clear-cut elbow. This
is one of the motivations of a probabilistic model-based approach to dimensionaity reduction, such as
probabilistic PCA (P-PCA) (which we’ll introduce in the next section), where one can use cross-validated
likelihoods to determine𝑀 .

With PCA, it can be shown that the fraction (percentage) of variance in the data which is explained by the
first𝑀 eigenvectors (principal components) can be found from the eigenvalues

Fraction of variance explained by𝑀 < 𝐷 eigenvectors =
∑𝑀

𝑖=1 𝜆𝑖

∑𝐷
𝑖=1 𝜆𝑖

.

Note: We described PCA in terms of maximizing the variance of the projected data. Equivalently, we
could have formulated PCA in terms of minimizing the projection error.

A.6 Summary of PCA

1. Data set: x𝑏 ∈ ℝ𝐷, 𝑛 = 1,… ,𝑁
2. Find the sample covariance, S, and mean,𝝁:

S = 1
𝑁

𝑁
∑
𝑛=1

(x−𝝁)(x−𝝁)T

𝝁 = 1
𝑁

𝑁
∑
𝑛=1

x
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3. Diagonalize S
S = U𝚲UT

where 𝚲 is a diagonal matrix with ordered eigenvalues on the diagonal, and U contains the
eigenvectors

⎡
⎢⎢
⎣

u1 u2 … u𝐷
⎤
⎥⎥
⎦

4. Choose𝑀 : Choose the number of reduced dimensions𝑀 < 𝐷. Define

U𝑀 =
⎡
⎢⎢
⎣

u1 u2 … u𝑀
⎤
⎥⎥
⎦

5. PC directions are the columns of U𝑀 .

6. PC scores:
z𝑛 = U𝑀

T(x𝑛 − 𝑢𝑏), z𝑛 ∈ ℝ𝑀

The “PC score” for a data point x𝑛 is its low-dimensional projection, z𝑛.

7. Back-projection: The low-dimensional point can be projected back into the data space:

̂x𝑛 = U𝑀z𝑛 +𝝁
= U𝑀U𝑀

T(x𝑛 −𝝁) + 𝝁

Note: The PC directions are only unique up to a sign difference. In other words, the 𝑖th PC direction can
be u𝑖 or−u𝑖. This will determine the sign of the 𝑖th PC score (i.e., 𝑧(𝑖)).

B. Probabilistic PCA

In the last section we described traditional principal components analysis as formulated as a linear pro-
jection into an orthogonal lower dimensional space which maximizes variance (or minimizes projection
error). Next we will describe a latent variable model for dimensionality reduction. The maximum likeli-
hood solution for this P-PCAmodel will end up yielding a nearly identical solution as PCA but with some
key advantages.

B.1 Advantages of P-PCA over conventional PCA

By virtue of being a probabilistic model, Probabilistic PCA has advantages over traditional PCA.

— P-PCAassignsprobabilities todata, sowecancomparedifferentmodels –particularlywithdifferent
values of the reduced number of dimensions,𝑀 – using cross-validated data likelihoods.

— P-PCA has an explicit noise model, so it can more effectively remove “noise” (i.e., variability not
explained by variation in the low-dimensional space).
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— If the data dimensionality, 𝐷, is large, calculation of the eigenvectors of the covariance matrix can
be an 𝑂(𝐷3) operation. The EM algorithm solution for P-PCA gives a nice (and more simple) way
to compute just the first𝑀 eigenvectors.

— Because it is a probabilisticmodel, with P-PCAone can learn the low-dimensional spacewhen there
is missing data. There is no principled way to modify the PCA algorithm in this condition.

— Because P-PCA is a probabilistic model, we can easily propose extensions like mixtures of P-PCA
models (which would be analogous to mixtures of Gaussians).

— Like all probabilistic latent variable models, P-PCA is generative, so one can generate synthetic
samples to examine.

B.2 Generative model for P-PCA

x ∈ ℝ𝐷is high dimensional observed data

z ∈ ℝ𝑀 is a lower dimensional latent variable

Pr(z) = 𝒩(0, I) “state model”

Pr(x ∣ z) = 𝒩(W⏟
𝐷×𝑀 matrix

z+𝝁, 𝜎2⏟
“observation noise”

I) “observation model” (4)

Looking ahead: If we fit this model to data x1,… , x𝑁 – that is if we find the model parameters 𝜃 =
{W, 𝝁, 𝜎2}whichmaximize the data likelihood – the columns ofWwill span the same space as the PCA
principal components (i.e., the columns ofU𝑀). In the limit of 𝜎2 → 0, the low-dimensional projections
of P-PCA approach those of PCA.

Here is a picture of the P-PCA model where𝑀 = 1 and𝐷 = 2:
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B.3 P-PCA is a linear Gaussian model

Since the latent variable model and the observation model have Gaussian variability and the observa-
tions (x) are linearly related to the latent variables (z) P-PCA falls into a very convenient model category
– the “linear Gaussian model”. For these models all the marginal, conditional, and joint distributions are
Gaussian!

Pr(x), Pr(z) ∶ Marginal distributions

Pr(x ∣ z), Pr(z ∣ x) ∶ Conditional distributions

Pr(x, z) ∶ Joint distribution

Since these distributions are all Gaussian, we can specify them completely by their means and covari-
ances. Our model specifies Pr(z) and Pr(x ∣ z), so lets find the parameters of the other distributions.

(i). Pr(x, z)

[z
x
] ∼ 𝒩([E(z)

E(x)] , [
Cov(z) E(z xT) − E(z) E(x)T

E(x zT) − E(x) E(z)T Cov(x) ])

E(z) = 0 From model specification

An equivalent way of describing our observations is

x = Wz+𝝁+ 𝝐,where 𝝐 ∼ 𝒩(0, 𝜎2I) (5)

Note that since we have originally specified this as the conditional distribution of x given z, this implies
that 𝝐 is independent of z. Taking the expectation over both z and 𝝐 (since we’re interested in the joint
distribution), we find

E(x) = E(Wz+𝝁+ 𝝐)
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= W���*
0

E(z) + 𝝁 +�
�>

0
E(𝝐

= 𝝁

Cov(z) = I From model specification

Cov(x) = E(x xT) − E(x) E(x)T
= E ((Wz+𝝁+ 𝝐)(Wz+𝝁+ 𝝐)T) − 𝝁𝝁T

= E(WzzTWT +����:0
Wz𝝁T +Wz𝝐T +����:0𝝁zTWT +𝝁𝝁T +�

��>
0

𝝁𝝐T + 𝝐zTWT +�
��>

0
𝝐𝝁T + 𝝐𝝐T) − 𝝁𝝁T

where we have cancelled all products of constants and zero mean variables

= E(WzzTWT +����:0
Wz𝝐T +𝝁𝝁T +����:0𝝐zTWT + 𝝐𝝐T) − 𝝁𝝁T Because 𝝐 and z are independent.

= W E(zzT)WT + E(𝝐𝝐T)
= WWT + 𝜎2I From the definitions

E(x zT) − E(x) E(z)T = E ((Wz+𝝁+ 𝝐)zT) − 0

= W E(zzT) + 𝝁���*0
E(zT) +����*

0
E(𝝐zT)

= W

So, plugging in, we have the joint distribution

[z
x
] ∼ 𝒩([0𝝁] , [

I WT

W WWT + 𝜎2I
]) (6)

(ii). Pr(x)

We can read the marginal distribution directly from (6).

Pr(x) ∼ 𝒩(𝝁,WWT + 𝜎2I) (7)

(iii). Pr(z ∣ x)

In order to find the other marginal distribution, we could write down the equations and use Bayes rule
and a bunch of linear algebra to simplify. Easier is tomake use of a useful factoid (see PRML Section 2.3.1):
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Conditioning for multivariate Gaussian random variables

If x = [x𝑎
x𝑏

] ∼ 𝒩([𝝁𝑎
𝝁𝑏

] , [𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

]) then Pr(x𝑎 ∣ x𝑏) is Gaussian with mean

E(x𝑎 ∣ x𝑏) = 𝝁𝑎 +𝚺𝑎𝑏𝚺−1
𝑏𝑏 (x𝑏 −𝝁𝑏)

and covariance
Cov(x𝑎 ∣ x𝑏) = 𝚺𝑎𝑎 −𝚺𝑎𝑏𝚺−1

𝑏𝑏𝚺𝑏𝑎

Let’s try to make intuitive sense of these equations. Basically, once we we observe x𝑏, we should
modify our estimate of x𝑎 (the𝚺𝑎𝑏 term), butweighted by hownoisy x𝑏 is (the𝚺−1

𝑎𝑏 term). And once
wemake that new estimate, the covariance decreases – we believe that we know a little more about
x𝑎 than we did before. The amount of that decrease doesn’t depend on the actual measurement
of x𝑏, just on it’s covariance and the transformation from one space to the other (the 𝚺𝑎𝑏𝚺−1

𝑏𝑏𝚺𝑏𝑎
term).

Plugging in from (6), we have

E(z ∣ x) = 0+WTC−1(x−𝝁)
Cov(z ∣ x) = I−WTC−1W,

where𝐶 = WWT + 𝜎2I.

Thus,
z ∣ x ∼ 𝒩(WTC−1(x−𝝁), I−WTC−1W) (8)

B.4 EM Algorithm for P-PCA

Goal: Maximize log Pr({x} ∣ 𝜃)where 𝜃 = {W, 𝝁, 𝜎2}.

The EM algorithmwill find an exact solution for themean,𝝁, and iteratively optimize values ofW and 𝜎2

such that the sample covariance is
S ≈ WWT + 𝜎2I.

This makes sense if we look back at (7).

The maximum likelihood solution for the mean is just the sample mean, which we’re not going to show.

E-Step:

Find Pr(z𝑛 ∣ x𝑛) for each data point using (8).

M-Step:

log Pr(x𝑁, z𝑁) =
𝑁
∑
𝑛=1

log Pr(x𝑛, z𝑛)
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=
𝑁
∑
𝑛=1

(log Pr(x𝑛 ∣ z𝑛) + log Pr(z𝑛))

=
𝑁
∑
𝑛=1

(−𝐷
2 log(2𝜋) − 1

2 log ∣𝜎2I∣ − 1
2(x𝑛 −Wz𝑛 −𝝁)T(𝜎2I)−1(x𝑛 −Wz𝑛 −𝝁)

− 𝑀
2 log(2𝜋) −

�����*
0𝑀

2 log |I| − 1
2z

Tz)

𝑄 = Ez∣x(log Pr(x𝑁, z𝑁))

=
𝑁
∑
𝑛=1

(−𝐷
2 log(2𝜋𝜎2) − 1

2𝜎2 Ez∣x((x𝑛 −𝝁−Wz𝑛)T(x𝑛 −𝝁−Wz𝑛))

− 𝑀
2 log(2𝜋) − 1

2 Ez∣x(zTz))

=
𝑁
∑
𝑛=1

(−𝐷
2 log(2𝜋𝜎2) − 1

2𝜎2((x𝑛 −𝝁)T(x𝑛 −𝝁)) − Ez∣x(zT𝑛WT(x𝑛 −𝝁))

− Ez∣x((x𝑛 −𝝁)TWz𝑛) + Ez∣x(zT𝑛WTWz𝑛))

− 𝑀
2 log(2𝜋) − 1

2 Ez∣x(zTz))

=
𝑁
∑
𝑛=1

(−𝐷
2 log(2𝜋𝜎2) − 1

2𝜎2((x𝑛 −𝝁)T(x𝑛 −𝝁)) − Ez∣x(z𝑛)TWT(x𝑛 −𝝁)

− (x𝑛 −𝝁)TW Ez∣x(z𝑛) + Tr(WTW Ez∣x(z𝑛zT𝑛)))

− 𝑀
2 log(2𝜋) − 1

2 Ez∣x(zT𝑛z𝑛))

𝜕𝑄
𝜕W =

𝑁
∑
𝑛=1

− 1
2𝜎2(−(x𝑛 −𝝁) Ez∣x(z𝑛)T − (x𝑛 −𝝁) Ez∣x(z𝑛)T + 2W Ez∣x(z𝑛 zT𝑛)) = 0

⟹ W(
𝑁
∑
𝑛=1

Ez∣x(z𝑛 zT𝑛)) =
𝑁
∑
𝑛=1

(x𝑛 −𝝁) Ez∣x(z𝑛)T

W𝑛𝑒𝑤 = (
𝑁
∑
𝑛=1

(x𝑛 −𝝁) Ez∣x(z𝑛)T)(
𝑁
∑
𝑛=1

Ez∣x(z𝑛 zT𝑛))
−1

(9)

𝜕𝑄
𝜕𝜎2 =

𝑁
∑
𝑛=1

−𝐷
2

1
𝜎2 + 1

2
1

(𝜎2)2( ⋅ ) = 0

−𝑁𝐷+ 1
𝜎2

𝑁
∑
𝑛=1

( ⋅ ) = 0
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⟹ 𝜎2 = 1
𝑁𝐷

𝑁
∑
𝑛=1

( ⋅ )

⟹ 𝜎2 = 1
𝑁𝐷

𝑁
∑
𝑛=1

((x𝑛 −𝝁)T(x𝑛 −𝝁)) − Ez∣x(z𝑛)TWT(x𝑛 −𝝁)

−(x𝑛 −𝝁)TW Ez∣x(z𝑛) + Tr(WTW Ez∣x(z𝑛zT𝑛)))

This is a complicated expression, but looking back, we remember that

𝑁
∑
𝑛=1

(x𝑛 −𝝁) Ez∣x(z𝑛)T = W𝑛𝑒𝑤(
𝑁
∑
𝑛=1

Ez∣x(z𝑛 zT𝑛)),

and note that all the individual expressions are scalars and thus can be wrapped in a trace operation.

Plugging this in, we have

𝜎2 = 1
𝑁𝐷(Tr(

𝑁
∑
𝑛=1

(x𝑛 −𝝁)T(x𝑛 −𝝁)) − Tr(
𝑁
∑
𝑛=1

Ez∣x(z𝑛)TWT(x𝑛 −𝝁))

− Tr(
𝑁
∑
𝑛=1

(x𝑛 −𝝁)TW Ez∣x(z𝑛)) + Tr(
𝑁
∑
𝑛=1

WTW Ez∣x(z𝑛zT𝑛)))

= 1
𝑁𝐷(Tr(

𝑁
∑
𝑛=1

(x𝑛 −𝝁)T(x𝑛 −𝝁)) − Tr(WT

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑁
∑
𝑛=1

(x𝑛 −𝝁) Ez∣x(z𝑛)T)

− Tr(W
𝑁
∑
𝑛=1

Ez∣x(z𝑛)(x𝑛 −𝝁)T) + Tr(
𝑁
∑
𝑛=1

WTW Ez∣x(z𝑛zT𝑛)))

= 1
𝑁𝐷(Tr(

𝑁
∑
𝑛=1

(x𝑛 −𝝁)T(x𝑛 −𝝁)) −
����������������

Tr(WT

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
W𝑛𝑒𝑤(

𝑁
∑
𝑛=1

Ez∣x(z𝑛 zT𝑛)))

− Tr(W
𝑁
∑
𝑛=1

Ez∣x(z𝑛)(x𝑛 −𝝁)T) +
������������

Tr(
𝑁
∑
𝑛=1

WTW Ez∣x(z𝑛zT𝑛)))

Making sure that all of our traces are over the same dimension of matrices we can combine to get our
final result:

𝜎2
𝑛𝑒𝑤 = 1

𝑁𝐷 Tr(
𝑁
∑
𝑛=1

(x𝑛 −𝝁)(x𝑛 −𝝁)T −W𝑛𝑒𝑤
𝑁
∑
𝑛=1

Ez∣x(z𝑛)(x𝑛 −𝝁)T) (10)

Implementation Aside: A common error in implementing the EM algorithm is for students to confuse
Ez∣x(z𝑛 zT𝑛) for the covariance in (8). Rather, it is the expected outer product,

Ez∣x(z𝑛 zT𝑛) = Cov(z𝑛 ∣ x𝑛) + E(z𝑛 ∣ x𝑛) E(z𝑛 ∣ x𝑛)T
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B.5 Relating P-PCA to PCA

PC Directions

The columns of W for P-PCA span the same space as that spanned by the columns of U𝑀 from PCA. The
difference between them is that the columns of U𝑀 are orthonormal and ordered based on the amount
of variance explained. Neither of these aspects will in general be true for W.

However, with some linear algebra one can obtainU𝑀 fromW. Specifically, we can calculate the singular
value decomposition (SVD) of W. The SVD is a generalization of the eigendecomposition for non-square
matrices.

Thematrix Ũ calculated fromW in P-PCAwill be identical (in the limit of EM convergence) toU𝑀 for PCA.

Low-dimensional projections

In P-PCA, the low-dimensional projection corresponding to W is E(z𝑛 ∣ x𝑛) = WTC−1(x𝑛 −𝝁) from (8).
The same point can be back-projected to the original state by

̂x𝑛 = W E(z𝑛 ∣ x𝑛) + 𝝁
= Ũ D̃ṼT E(z𝑛 ∣ x𝑛)⏟⏟⏟⏟⏟⏟⏟

call this ̃z𝑛
+𝝁

There are several important reasons why ̃z𝑛 is easier to interpret than E(z𝑛 ∣ x𝑛). All of the reasons stem
from the fact that the columns of Ũ are orthonormal and ordered while those of W are not.
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1. ̃z𝑛 has the same units as x𝑛 (as in PCA)

2. The dimensions of ̃z𝑛 are ordered (as in PCA), whereas E(z𝑛 ∣ x𝑛) can be arbitrarily rotated and
scaled in the latent space.

3. ̃z𝑛 can be easily compared to the low-dimensional PCA projection.

Howdoes the low-dimensional projection for P-PCA ( ̃z𝑛) comparewith that of PCA (U𝑀(x𝑛−𝝁))? With-
out proof,

̃z𝑛 = ⎡
⎢
⎣

𝜆1−𝜎2

𝜆1
0

⋱
0 𝜆𝑀−𝜎2

𝜆𝑀

⎤
⎥
⎦
U𝑀(x𝑛 −𝝁) (11)

Unpacking, this means that the low-dimensional projection for P-PCA shrinks the PCA low-dimensional
projection to the origin in z-space, because 0 ≤ 𝜆𝑖−𝜎2

𝜆𝑖
≤ 1. Furthermore, as 𝜎2 → 0, the P-PCA projec-

tions converge to the PCA projections.

Intuition for P-PCA vs PCA

Each of thesemodels is trying to explain the variability of x away from its mean𝝁. P-PCA can explain this
variability as a combinationof variation in low-dimensional space– the latent variable z–andobservation
noise, 𝝐 ∼ 𝒩(0, 𝜎2I). But how much of each?

As𝜎2 increases (moreobservationnoise), theproportionof the variability attributed toobservationnoise
increases, and the proportion attributed to the latent space decreases, shrinking z to its mean (which is
zero, corresponding to 𝜇 in the data space). PCA is the opposite limit; as 𝜎2 decreases to zero, there is no
observation noise, and all variability of x from 𝝁 must be explained by the latent variable space. Thus,
P-PCA is more effective at denoising data than PCA.

B.6 Redux - Advantages of P-PCA over PCA

— The dimensionality, 𝑀 , of the latent space for P-PCA can be selected using cross-validated likeli-
hoods, where Pr({x}𝑁) is given in (7).

— P-PCA defines a constrained Gaussian in (7), with Cov(x) = WWT + 𝜎2I, which is a useful com-
promise between a Gaussian with diagonal covariance (too constraining in many situations) and a
Gaussian with a full covariancematrix (underconstrained in the scenarios where wewould want to
employ dimensionality reduction).

C. Factor Analysis (FA)

C.1 Motivation

P-PCA assumes that the observation noise is “isotropic” – the same in all observation dimensions. This
makes sense if each dimension is a similarmeasurement, but if they are different (i.e., height andweight),
we would like each dimension of x to have a different level of observation noise.

The only difference between FA and P-PCA is that instead of modeling the covariance of the observation
noise as 𝜎2I (in (5)), the observation noise covariance is a diagonal matrix𝚿. So, for FA

x ∼ 𝒩(𝜇,WWT +𝚿), (12)

13
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where the similarity to (7) is clear.

We can define an EM algorithm that is nearly identical to P-PCA. When solving for the M-step, after re-
placing all the instances of 𝜎2Iwith𝚿, the update forW is unchanged and the update for the covariance
becomes

𝚿𝑛𝑒𝑤 = 1
𝑁 diag(

𝑁
∑
𝑛=1

(x𝑛 −𝝁)(x𝑛 −𝝁)T −W𝑛𝑒𝑤
𝑁
∑
𝑛=1

Ez∣x(z𝑛)(x𝑛 −𝝁)T) (13)

where the diag() operator zeros the off-diagonal elements. For the E-step, everything is the same except
the marginal covariance of x (𝐶 in (8)) is given by (12).

(i). Comparing FA and P-PCA

Because of the non-isotropic observation noise, FA will identify different latent dimensions within the
data space than P-PCA/PCA. As with P-PCA, we will need to orthonormalize the columns of W for inter-
pretability.

— PCA/P-PCA is invariant to rotations in the data space, whereas FA is not. This is because in FA, the
observation noise is associated with each axis independently.

— FA is invariant to component-wise rescaling of the data, whereas P-PCA/PCA is not. An example of

component-wise rescaling would be [𝑥
(1)

𝑥(2)] → [3𝑥
(1)

1
2𝑥(2)]. The reason is that the observation noise

is assumed to be the same for each data dimension in P-PCA/PCA.

Appendix

Useful matrix derivatives

𝜕
𝜕XaTXbT = a bT (14)

𝜕
𝜕XaTXTbT = b aT (15)

𝜕
𝜕X Tr(XXTA) = X(A+ AT) (16)

Matrix inversion lemma

Inverting C = WWT +𝜎2I directly in (8) can be quite a costly𝑂(𝐷3) operation. Instead, one can use the
matrix inversion lemma

C−1 = 𝜎−2I− 𝜎−2W(𝜎2I+WTW⏟⏟⏟⏟⏟
𝑀 ×𝑀

)−1WT.

14
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Assuming 𝑀 ≪ 𝐷, the inverse is now a much easier 𝑂(𝑀3) operation. There’s an equivalent trick for
FA, which is slightly more complex because of the non-constant diagonal.
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