
ELEC548 Kalman Filter

ELEC 548 Kalman Filter

A. Motivation - Continuous Latent Variable Models

We have implemented latent variable models for Classification, Clustering, and Dimensionality Reduc-
tion. In all of these cases, the data we were modeling were static – they came from a single snap shot or
measurement and our models did not incorporate the concept of time or continuity.

However, for many machine learning problems, the observed data vary with time. For these problems,
we will want our underlying latent variable model to capture the continuity present in the temporal re-
lationship between data points. We want models that are dynamical.

B. Linear Dynamical Systems (LDS)

At time step 𝑡 = 1, … , 𝑇 , let:

z𝑡 ∈ ℝ𝑀 be the (latent) “state” variable at time 𝑡
x𝑡 ∈ ℝ𝐷 be the observation at time 𝑡

State Model:

The state model describes how the state evolves over time. Similarly to how we used a linear Gaussian
model for Dimensionality Reduction, pointing out that both the linear and Gaussian aspects make this
the simplest interesting model, a Linear Dynamical System with Gaussian “innovations” (changes from
one time step to the next) is the simplest interesting model for how the underlying state evolves over
time.

z𝑡 ∣ z𝑡−1 ∼ 𝒩(Az𝑡−1,Q)
z1 ∼ 𝒩(𝝅,V) (1)

Observation Model:

The observationmodel describes how the observed data relates to the state. Similarly to the statemode,
the simplest way of relating the state to our observed data is a linear, Gaussian observation model.

x𝑡 ∣ z𝑡 ∼ 𝒩(Cz𝑡,R) (2)

Thus, the model parameters are 𝜃 = {A,Q, 𝝅,V,C,R. Exercise to the reader: What are the dimensions of
each of these parameters?

Markov assumption

Notice that the state model uses a first-order Markov assumption. Specifically, we assume that z𝑡−1, the
state at time 𝑡 − 1, contains all the relevant information necessary to predict z𝑡, the state at time 𝑡. This
means that we can write down a simple formula for the joint probability of the state over all times:

Pr(z1, … , z𝑇) = Pr(z1) Pr(z2 ∣ z1) Pr(z3 ∣ z2,��z1) … Pr(z𝑇 ∣ z1,(((((z2 … z𝑇−1) (Markov assumption)

1

ELEC548 Kalman Filter

= Pr(z1)
𝑇

∏
𝑡=2

Pr(z𝑡 ∣ z𝑡−1)

B.1 Training phase

Goal: Estimate the model parameters 𝜃 = {A,Q, 𝝅,V,C,R from the training data.

unsupervised If the values of the state variables z𝑡 are unknown during training, use the EM algorithm
learning Maximize Pr({x} ∣ 𝜃) with respect to 𝜃.

supervised If the values of the state variables z𝑡 are known (the simpler case) during training
learning Maximize Pr({x}, {z} ∣ 𝜃) with respect to 𝜃.

Wewill consider the simpler, supervised learning case, where the z𝑡 are knownduring training. Thismakes
sense if we are designing, for example, a real time neural signal processing system in which the thing we
wish to decode (e.g., arm trajectories) canbemeasuredduring trianing. In this context, the latent variable
is known during training and unknown during testing/operation.

(i). Maxmimum Likelihood Parameters in Supervised Training

Pr({x}, {z} ∣ 𝜃) = Pr(z1)
𝑇

∏
𝑡=2

Pr(z𝑡 ∣ z𝑡−1)(
𝑇

∏
𝑡=1

Pr(x𝑡 ∣ x𝑡))

Writing down the training data log-likelihood, we have

ℒ(𝜃) = log Pr({x}, {z} ∣ 𝜃)

= log Pr(z1) +
𝑇

∑
𝑡=2

log Pr(z𝑡 ∣ z𝑡−1) +
𝑇

∑
𝑡=1

log Pr(z𝑡 ∣ x𝑡)

= −𝑀
2 log(2𝜋) − 1

2 log |V| − 1
2(z1 − 𝝅)TV−1(z1 − 𝝅)

+
𝑇

∑
𝑡=2

(−𝑀
2 log(2𝜋) − 1

2 log |Q| − 1
2(z𝑡 − Az𝑡−1)TQ−1(z𝑡 − Az𝑡−1))

+
𝑇

∑
𝑡=1

(−𝐷
2 log(2𝜋) − 1

2 log |R| − 1
2(x𝑡 − Cz𝑡)TR−1(x𝑡 − Cz𝑡))

Solving for A (which describes the dynamics of the state variable):

𝜕ℒ(𝜃)
𝜕A = 𝜕

𝜕A{
𝑇

∑
𝑡=2

(−1
2(z𝑡 − Az𝑡−1)TQ−1(z𝑡 − Az𝑡−1))}

= −1
2

𝜕
𝜕A{

𝑇
∑
𝑡=2

(−zT𝑡−1A
TQ−1z𝑡 − zTQ−1Az𝑡−1 + zT𝑡−1A

TQ−1Az𝑡−1)}

= −1
2

𝜕
𝜕A{Tr(ATQ−1

𝑇
∑
𝑡=2

z𝑡zT𝑡−1) + Tr(A
𝑇

∑
𝑡=2

z𝑡zT𝑡−1Q
−1) + Tr(Q−1A

𝑇
∑
𝑡=2

z𝑡zT𝑡−1A
T)}

2

ELEC548 Kalman Filter

= −1
2 (−Q−1

𝑇
∑
𝑡=2

z𝑡zT𝑡−1 − Q−1
𝑇

∑
𝑡=2

z𝑡zT𝑡−1 + Q−1A
𝑇

∑
𝑡=2

z𝑡−1zT𝑡−1 + Q−1A
𝑇

∑
𝑡=2

z𝑡−1zT𝑡−1)

= 0

Here, we have made use of the fact that because its a symmetric covariance matrix, Q−T = Q−1, and
𝑑

𝑑X Tr(XAT) = 𝑑
𝑑X Tr(XTA) = A and 𝑑

𝑑X Tr(AXBXTC) = ATCTXBT + CAXB. Solving, we have

A = (
𝑇

∑
𝑡=2

z𝑡z𝑡−1) (
𝑇

∑
𝑡=2

z𝑡−1z𝑡−1)
−1

(3)

Solving forQ (which describes the variability of the innovation, or change from one time step to the next
of the state variable):

𝜕ℒ(𝜃)
𝜕Q = 𝜕

𝜕Q{−𝑇 − 1
2 log |Q| − 1

2 Tr(Q−1
𝑇

∑
𝑛=2

(z𝑡 − Az𝑡−1)(z𝑡 − Az𝑡−1)T)}

= −𝑇 − 1
2 Q−1 − 1

2 (Q−1
𝑇

∑
𝑛=2

(z𝑡 − Az𝑡−1)(z𝑡 − Az𝑡−1)TQ−1) = 0

Here, we have additionally used the fact that 𝑑
𝑑X Tr(X−1A) = −X−1AX−1 and 𝑓𝑟𝑎𝑐𝑑𝑑X log |X| = X−1.

Solving, we have

Q = 1
𝑇 − 1

𝑇
∑
𝑡=2

(z𝑡 − Az𝑡−1)(z𝑡 − Az𝑡−1)T (4)

(using the A found above.) Note that these solutions are identical to the solutions to linear regreissions!

The solutions for 𝜕ℒ(𝜃)
𝜕C = 0 and 𝜕ℒ(𝜃)

𝜕R = 0 follow very similar math and give us the solutions

C = (
𝑇

∑
𝑡=1

x𝑡z𝑡) (
𝑇

∑
𝑡=1

z𝑡z𝑡)
−1

(5)

and

R = 1
𝑇

𝑇
∑
𝑡=1

(x𝑡 − Rz𝑡)(x𝑡 − Cz𝑡)T (6)

(using the solution for C found above).

In these solutions, for simplicity we have considered only one sequence of state and observation vari-
ables. In most scenarios, we would have multiple sequences of training data, potentially each with a
different length (𝑇). If we define {x}𝑛 and {z}𝑛 as the 𝑛-th training sequence (𝑛 = 1, … , 𝑁), then the
goal for training would be to find the parameters, 𝑡ℎ𝑒𝑡𝑎, which maximize ∏𝑁

𝑛=1 Pr({x}𝑛, {z}𝑛 ∣ 𝜃).

3

ELEC548 Kalman Filter

The maximimum likelihood solutions in themultiple sequence training case for equations (3) – (6) have
the same form, but each summation is over more elements. The solution is almost the same as concate-
nating all the sequences together, with the exception that the terms in the dynamics equations, (3) and
(4) that would involve z𝑇,𝑛 and z1,𝑛+1 are not included.

In the case of multiple sequences, we can also solve for the initial state distribution. 𝝅 and V are the
sample mean and covariance, respectively, of the 𝑁 instances of z1.

C. Test Phase / Decoding

Goal: Compute Pr(z𝑡 ∣ x1, … , x𝑡) for 𝑡 = 1, … , 𝑇 .

The variables z1, … , z𝑇 , x1, … , x𝑇 are jointly Gaussian, so Pr(z𝑡 ∣ {x}𝑇
1) is Gaussian (using the notation

{x}𝑇
1 = x1, … , x𝑡). Thus, we only need to find its mean and covariance.

We can compute Pr(z𝑡 ∣ {x}𝑇
1) recursively starting at 𝑡 = 1.

One-step (forward) prediction

Pr(z𝑡 ∣ {x}𝑡−1
1)⏟⏟⏟⏟⏟⏟⏟ = ∫ Pr(z𝑡 ∣ z𝑡−1)⏟⏟⏟⏟⏟

state model

Pr(z𝑡−1 ∣ {x}𝑡−1
1)⏟⏟⏟⏟⏟⏟⏟ (7)

Measurement update

⏞⏞⏞⏞⏞Pr(z𝑡 ∣ {x}𝑡
1) =

obs. model
⏞⏞⏞⏞⏞Pr(x𝑡 ∣ z𝑡) ⏞⏞⏞⏞⏞⏞⏞Pr(z𝑡 ∣ {x}𝑡−1

1)
Pr(x𝑡 ∣ {x}𝑡−1

1) (8)

Note that equations (7) and (8) are always a valid way of describing a dynamical system with Markovian
properties. When we specify “linear” and “Gaussian”, then each component is Gaussian, and all that we
need to calculate are the mean and covariance. Define

𝝁𝜏
𝑡 = E(z𝑡 ∣ {x}𝜏

1)
𝚺𝜏

𝑡 = Cov(z𝑡 ∣ {x}𝜏
1)

One-step prediction

z𝑡 ∣ {x}𝑡−1
1 ∼ 𝒩(𝝁𝑡−1

𝑡 , 𝚺𝑡−1
𝑡)

So we need to find 𝝁𝑡−1
𝑡 and 𝚺𝑡−1

𝑡 . We can equivalently write (1) as

z𝑡 = Az𝑡−1 + v𝑡, v𝑡 ∼ 𝒩(0,Q)

Thus,

𝝁𝑡−1
𝑡 = E(z𝑡 ∣ {x}𝑡−1

1)
= A E(z𝑡−1 ∣ {x}𝑡

1) +(((((((
E(v𝑡 ∣ {x}𝑡−1

1)

4

ELEC548 Kalman Filter

𝝁𝑡−1
𝑡 = A𝝁𝑡−1

𝑡−1 (9)

and

𝚺𝑡−1
𝑡 = Cov(z𝑡 ∣ {x}𝑡−1

1)
= E((Az𝑡−1 + v𝑡)(Az𝑡−1 + v𝑡)T) − E(z𝑡 ∣ {x}𝑡−1

1) E(z𝑡 ∣ {x}𝑡−1
1)T

= E(Az𝑡−1zT𝑡−1A
T +�����v𝑡zT𝑡−1A

T +�����Az𝑡−1vT𝑡 + v𝑡v𝑡)T) − A𝝁𝑡−1
𝑡−1(𝝁𝑡−1

𝑡−1)TAT

= ACov(z𝑡−1 ∣ {x}𝑡
1)AT + Cov(v𝑡 ∣ {x}𝑡−1

1)

𝚺𝑡−1
𝑡 = A𝚺𝑡−1

𝑡−1A
T + Q (10)

Measurement update

z𝑡 ∣ {x}𝑡
1 ∼ 𝒩(𝝁𝑡

𝑡, 𝚺𝑡
𝑡)

Soweneed to find𝝁𝑡
𝑡 and𝚺𝑡

𝑡. Notice that (8) is just Bayes rule for z𝑡 given x𝑡 with everything conditioned
on {x}𝑡−1

1 . So inspired by what we learned in our analysis of Dimensionality Reduction (P-PCA) about
conditional Gaussian distributions from the joint distribution, lets start by finding the joint distribution
Pr(z𝑡, x𝑡 ∣ {x}𝑡−1

1).
We will start by noting the equivalent form of (2) is

x𝑡 = Cz𝑡 + w𝑡, w𝑡 ∼ 𝒩(0,R)

We need E(x𝑡 ∣ {x}𝑡−1
1), Cov(x𝑡 ∣ {x}𝑡−1

1), and the cross covariance E(x𝑡 zT𝑡 ∣ {x}𝑡−1
1).

E(x𝑡 ∣ {x}𝑡−1
1) = C E(z𝑡 ∣ {x}𝑡−1

1) +((((((((
E(w𝑡 ∣ {x}𝑡−1

1)
= C𝝁𝑡−1

𝑡 (11)

Cov(x𝑡 ∣ {x}𝑡−1
1) = CCov(z𝑡 ∣ {x}𝑡−1

1)CT + Cov(w𝑡 ∣ {x}𝑡−1
1) +(((((((E(cross terms)

= C𝚺𝑡−1
𝑡 CT + R (12)

E(x𝑡 zT𝑡 ∣ {x}𝑡−1
1) − E(x𝑡 ∣ {x}𝑡−1

1) E(z𝑡 ∣ {x}𝑡−1
1)T (13)

= C E(z𝑡 zT𝑡 ∣ {x}𝑡−1
1) +((((((((

E(v𝑡 zT𝑡 ∣ {x}𝑡−1
1) − C𝝁𝑡−1

𝑡 𝝁𝑡−1
𝑡

T (14)

= C𝚺𝑡−1
𝑡 (15)

Filling in, we have

5

ELEC548 Kalman Filter

[x𝑡
z𝑡

] ∣ {x}𝑡−1
1 ∼ 𝒩 ([C𝝁𝑡−1

𝑡
𝝁𝑡−1

𝑡
] , [C𝚺𝑡−1

𝑡 CT + R C𝚺𝑡−1
𝑡

𝚺𝑡−1
𝑡 CT 𝚺𝑡−1

𝑡
])

Now, applying the rule for conditioning in jointly Gaussian random variables (see Dimensionality Reduc-
tion notes), we have

𝝁𝑡
𝑡 = E(z𝑡 ∣ x𝑡, {x}𝑡−1

1)
= 𝝁𝑡−1

𝑡 + 𝚺𝑡−1
𝑡 CT(C𝚺𝑡−1

𝑡 CT + R)−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟(x𝑡 − C𝝁𝑡−1
𝑡)

The highlighted term, 𝚺𝑡−1
𝑡 CT(C𝚺𝑡−1

𝑡 CT + R)−1, is often defined as a single matrix, K𝑡, or the “Kalman
gain”. Rewriting, we have

𝝁𝑡
𝑡 = 𝝁𝑡−1

𝑡 + K𝑡(x𝑡 − C𝝁𝑡−1
𝑡) (16)

𝚺𝑡
𝑡 = Cov(z𝑡 ∣ x𝑡, {x}𝑡−1

1)
= 𝚺𝑡−1

𝑡 + 𝚺𝑡−1
𝑡 CT(C𝚺𝑡−1

𝑡 CT + R)−1C𝚺𝑡−1
𝑡

𝚺𝑡
𝑡 = 𝚺𝑡−1

𝑡 + K𝑡C𝚺𝑡−1
𝑡 (17)

So we can now restate the recursive computation in terms of the means and covariances:

One-step (forward) prediction

Pr(z𝑡 ∣ {x}𝑡−1
1) = ∫ Pr(z𝑡 ∣ z𝑡−1) Pr(z𝑡−1 ∣ {x}𝑡−1

1)

𝝁𝑡−1
𝑡 = A𝝁𝑡−1

𝑡−1,
𝚺𝑡−1

𝑡 = A𝚺𝑡−1
𝑡−1A

T + Q

Measurement update

Pr(z𝑡 ∣ {x}𝑡
1) = Pr(z𝑡 ∣ z𝑡) Pr(z𝑡 ∣ {x}𝑡−1

1)
Pr(x𝑡 ∣ {x}𝑡−1

1)
𝝁𝑡

𝑡 = 𝝁𝑡−1
𝑡 + K𝑡(x𝑡 − C𝝁𝑡−1

𝑡),
𝚺𝑡

𝑡 = 𝚺𝑡−1
𝑡 + K𝑡C𝚺𝑡−1

𝑡 ,
where K𝑡 = 𝚺𝑡−1

𝑡 CT(C𝚺𝑡−1
𝑡 CT + R)−1

(18)

Using these recursions, we can obtain 𝝁𝑡
𝑡 and 𝚺𝑡

𝑡 for 𝑡 = 1, … 𝑇 . What do they mean?

— 𝝁𝑡
𝑡 is the estimate of the state at time 𝑡

— 𝚺𝑡
𝑡 is our uncertainty around that estimate at time 𝑡

How dowe initialize the recursion? We initialize with 𝝁0
1 = 𝝅 and 𝚺0

1 = V.

6

ELEC548 Kalman Filter

D. Unsupervised learning?

How do we train a linear Gaussian dynamical system model if we don’t have training data? The unsu-
pervised learning solution is described in Chapter 12 of PRML. Briefly, the EM algorithm iterates between
state estimation via (18) and ML parameter estimation using sufficient statistics calculated from those
state estimates.

7

