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A. Gaussian Mixtures

In general, a mixture model can be defined for arbitrary probability distributions. However as is almost
always the case, the Gaussian distributionmakes everything work nicely. Mixture models are a key foun-
dation for machine learning based on probabilistic generative models.

Wewill use aMixture of Guassians as a probabilistic generativemodel for clustering. A good reference for
this topic is Chapter 9 of Bishop’s Pattern Recognition and Machine Learning. The first step to generate a
data point is to start with the cluster identity.

Let 𝑧 ∈ {1, … , 𝐾} be a discrete random variable.

We can define the probability of drawing a point from an individual mixture component (i.e., cluster) as

Pr(𝑧 = 𝑘) = 𝜋𝑘, where 𝑘 = 1, … , 𝐾. (1)

Note that for Pr(𝑧) to be a valid probability distribution, 0 ≤ 𝜋𝑘 ≤ 1 and ∑𝐾
𝑘=1 𝜋𝑘 = 1.

Aside: We have begun our discussion of mixture models implicitly assuming that the number of clus-
ters, 𝐾 , is specified. Non-parametric models, for which 𝐾 would not be prespefied, have been an area
of active development in the last decade. A good introduction to this topic is Chapter 25 of Murphy
Machine Learning: A Probabilistic Perspective.

Once we have our prior probability, Pr(𝑧), we can define the distribution of the data point from the se-
lected mixture component

Pr(x ∣ 𝑧 = 𝑘) = 𝒩(x ∣ 𝝁𝑘, 𝚺𝑘) (2)

Combining the prior probability of the cluster and the distribution of data points within the cluster we
get the marginal probability of an observed data point:

Pr(x) = ∑
𝑧

Pr(x ∣ 𝑧) Pr(𝑧) =
𝐾

∑
𝑘=1

𝒩(x ∣ 𝝁𝑘, 𝚺𝑘)𝜋𝑘. (3)

A peak ahead: We will use the Pr(x) density with training data to do maximum likelihood parameter
estimation. Then, with optimized parameters we can use the aposteriori density, Pr(𝑧 ∣ x), to assign data
points to clusters either with a “”hard decision” (choosing the class whichmaximizes the density) or with
a “soft decision” (keeping track of how likely the datapoint is to have come from each cluster).

A.1 Maximum likelihood parameter estimation

Goal: Fit 𝝁𝑘, 𝚺𝑘, 𝜋𝑘 to training data x1, … , x𝑁.
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We will use the notational shorthand {x} for the training data x1, … x𝑁 , and the shorthand 𝜃 for all the
parameters of the model {𝝁𝑘, 𝚺𝑘, 𝜋𝑘}𝑘=1,…,𝐾. Then, we can write down the likelihood of our training
data

Pr({x} ∣ 𝜃) =
𝑁
∏
𝑛=1

Pr(x𝑛)

=
𝑁
∏
𝑛=1

𝐾
∑
𝑘=1

𝒩(x ∣ 𝝁𝑘, 𝚺𝑘)𝜋𝑘

log Pr({x} ∣ 𝜃)⏟⏟⏟⏟⏟⏟⏟
call this ℒ

=
𝑁

∑
𝑛=1

log[
𝐾

∑
𝑘=1

𝒩(x ∣ 𝝁𝑘, 𝚺𝑘)𝜋𝑘] .

(i). Find 𝝁𝑘:

𝜕ℒ
𝜕𝝁𝑘

=
𝑁

∑
𝑛=1

1
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗) ⋅ 𝜋𝑗
⋅ 𝜋𝑘 ⋅ ( 𝜕

𝜕𝝁𝑘
𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘)) (4)

Looking at our handy table of matrix derivatives, we find that for a symmetric A, 𝜕
𝜕x (xTAx) = 2Ax. Then,

applying the chain rule, we have

𝜕
𝜕𝝁𝒩(x ∣ 𝝁, 𝚺) = 𝜕

𝜕𝝁 ( 1
(2𝜋) 𝐷

2 |𝚺| 1
2

𝑒− 1
2 (x−𝝁)T𝚺−1(x−𝝁))

= 𝒩(x ∣ 𝝁, 𝚺) ⋅ 𝚺−1(x − 𝝁).

Plugging this into (4), we have

𝜕ℒ
𝜕𝝁𝑘

=
𝑁

∑
𝑛=1

𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘) ⋅ 𝜋𝑘
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗) ⋅ 𝜋𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
call this 𝛾𝑛𝑘

⋅𝚺−1(x − 𝝁)

= 𝚺−1
𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘(x − 𝝁)

= 0

Defining 𝑁𝑘 = ∑𝑁
𝑛=1 𝛾𝑛𝑘, we the result

𝝁𝑘 = 1
𝑁𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘x𝑛 (5)

Notice that this result is very similar to the cluster update for K-means, with 𝛾𝑛𝑘 replacing 𝑟𝑛𝑘 as tge
“responsibility” that cluster 𝑘 takes in explaining the observation x𝑛. Notice that 0 ≤ 𝛾𝑛𝑘 ≤ 1 and
∑𝐾

𝑘=1 𝛾𝑛𝑘 = 1. Let’s think about this by looking at what 𝛾𝑛𝑘 is:
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𝛾𝑛𝑘 = Pr(𝑧𝑛 = 𝑘 ∣ x𝑛)

= Pr(x𝑛 ∣ 𝑧𝑛 = 𝑘) Pr(𝑧𝑛 = 𝑘)
Pr(x𝑛)

= 𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘) ⋅ 𝜋𝑘
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗) ⋅ 𝜋𝑗

So, while 𝜋𝑘 is the prior probability that 𝑧𝑛 = 𝑘, 𝛾𝑛𝑘 is the posterior probability that 𝑧𝑛 = 𝑘 after we
have observed x𝑛.

Unlike in the case of K-means, where training data points are assigned to a particular cluster and 𝑁𝑘 is
the number of points in that cluster, for themixture model, we can think of 𝑁𝑘 as the “effective number”
of points in cluster 𝑘.
Thus, in equation (5), 𝝁𝑘 is a weighted mean of the training data, where the weights are given by the
responsibilities, 𝛾𝑛𝑘. A small value of 𝛾𝑛𝑘 means that cluster 𝑘 bears little responsiblity for data point
x𝑛 and a large value means that it is very repsonsible for x𝑛. (5) is very similar to the cluster update in
K-means, exect that rather than hard assignments to each cluster – 𝑟𝑛𝑘 = 0 or 1 – each data point has a
soft assignment based on 𝛾𝑛𝑘.

(ii). Find 𝚺𝑘:

Lookingatourhandy tableofmatrixderivatives,wefind that for a symmetric 𝜕
𝜕X Tr (X−1A) = −X−1AX−1.

Then, applying product and chain rules, we have

𝜕
𝜕𝚺𝒩(x ∣ 𝝁, 𝚺) = 𝜕

𝜕𝚺 ( 1
(2𝜋) 𝐷

2 |𝚺| 1
2

𝑒− 1
2 (x−𝝁)T𝚺−1(x−𝝁))

= 1
(2𝜋) 𝐷

2
(𝑒− 1

2 (x−𝝁)T𝚺−1(x−𝝁) 𝜕
𝜕𝚺

1
|𝚺| 1

2
+ 1

|𝚺| 1
2

𝜕
𝜕𝚺𝑒− 1

2 (x−𝝁)T𝚺−1(x−𝝁))

= 1
(2𝜋) 𝐷

2
𝑒− 1

2 (x−𝝁)T𝚺−1(x−𝝁)[ (−1
2

|𝚺| 𝚺−1

|𝚺| 3
2

)

+ 1
|𝚺| 1

2
(−1

2
𝜕

𝜕𝚺 Tr (𝚺−1(x − 𝝁)(x − 𝝁)T)) ]

= −1
2𝒩(x ∣ 𝝁, 𝚺) (𝚺−1 − 𝚺−1(x − 𝝁)(x − 𝝁)T𝚺−1)

Thus, we have

𝜕ℒ
𝜕𝚺𝑘

=
𝑁

∑
𝑛=1

1
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗) ⋅ 𝜋𝑗
⋅ 𝜋𝑘 ⋅ ( 𝜕

𝜕𝚺𝑘
𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘))

= −1
2

𝑁
∑
𝑛=1

𝛾𝑛𝑘 (𝚺−1 − 𝚺−1(x − 𝝁)(x − 𝝁)T𝚺−1)
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= 0

Rearranging,

𝚺−1
𝑁

∑
𝑛=1

𝛾𝑛𝑘 =
𝑁

∑
𝑛=1

𝛾𝑛𝑘(x − 𝝁)(x − 𝝁)T𝚺−1

𝚺−1𝑁𝑘 = 𝚺−1 (
𝑁

∑
𝑛=1

𝛾𝑛𝑘(x − 𝝁)(x − 𝝁)T) 𝚺−1

Front and back multiplying by the covariance matrix, 𝚺, we have our result

𝚺𝑘 = 1
𝑁𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘(x𝑛 − 𝝁)(x𝑛 − 𝝁)T . (6)

As with the means, this is simply a weighted sample covariance of the training data.

(iii). Find 𝜋𝑘:

Finding a solution for 𝜋𝑘, the prior probilities of mixture component 𝑘 is slightly more complicated, be-
cause of the constraint that the prior probabilitiesmust sum to 1. Rather than a set-the-derivative-equal-
to-zero maximization, this is a constrained maximization. This can be done with the Lagrange multiplier
technique. Instead of maxizing ℒ, we maximize

ℒ′ = ℒ + 𝜆 (
𝐾

∑
𝑘=1

𝜋𝑘) ,

where 𝜆 is the Lagrangemultiplier who’s value we’ll discover by enforcing the constraint on the solution.

𝜕ℒ′

𝜕𝜋𝑘
= 𝜕ℒ

𝜕𝜋𝑘
+ 𝜆

=
𝑁

∑
𝑛=1

1
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗) ⋅ 𝜋𝑗
⋅ 𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘) + 𝜆

=
𝑁

∑
𝑛=1

𝛾𝑛𝑘
𝜋𝑘

+ 𝜆 = 0

Rearranging and multiplying both sides by 𝜋𝑘,

𝑁
∑
𝑛=1

𝛾𝑛𝑘 = −𝜆 ⋅ 𝜋𝑘

⟹ 𝜋𝑘 = −𝑁𝑘
𝜆

Now, we can enforce the constraint that ∑𝐾
𝑘=1 𝜋𝑘 = 1.

−
∑𝐾

𝑘=1 𝑁𝑘
𝜆 = 1
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⟹ 𝜆 = −𝑁
Thus,

𝜋𝑘 = 𝑁𝑘
𝑁 . (7)

In other words, the prior probability of each mixture component is the effective fraction of training data
for which the component is given responsibility. If we were doing hard assignment, this would just be
the number of points assigned to the component.

Wait a second! The maximum likelihood parameters given by (5), (6), and (7) are not actually in closed
form! The resposibilities, 𝛾𝑛𝑘, appear in the right hand sides of the equations, but depend on the values
of the parameters. This suggests an iterative solution – using initial guesses of the parameters to estimate
the responsibilities, then recalculating theparameters. This turnsout tobean instanceof theExpectation
Maximization (EM) Algorithm.

The EMalgorithm is a powerful andgeneralmethod for optimizing theparameters formodelswith latent
variables. A latent variable is a random variable defined as part of generative model that represents
something that is not actually observed. In the clustering mixture model, the {𝑧𝑛} are latent variables –
unlike the {x𝑛}, they are never directly observed.

A.2 EM Algorithm for Gaussian Mixture Model

1. Initialize parameters 𝝁𝑘, 𝚺𝑘, 𝜋𝑘∀𝑘 ∈ 1, … , 𝐾 . (Also need to decide on 𝐾!)

2. E-step: Evaluate responsibilities given current parameter values

𝛾𝑛𝑘 = 𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘)
∑𝐾

𝑗=1 𝒩(x𝑛 ∣ 𝝁𝑗, 𝚺𝑗)

3. M-step: Re-estimate parameters using the current values of the responsibilities

𝝁new
𝑘 = 1

𝑁𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘x𝑛

𝚺new
𝑘 = 1

𝑁𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘(x𝑛 − 𝝁new)(x𝑛 − 𝝁new)T

𝜋new
𝑘 = 𝑁𝑘

𝑁

where 𝑁𝑘 = ∑𝑁
𝑛=1 𝛾𝑛𝑘.

4. Evaluate the log likelihood of training data:

log Pr({x𝑛} ∣ 𝜃) =
𝑁

∑
𝑛=1

log[
𝐾

∑
𝑘=1

𝒩(x𝑛 ∣ 𝝁𝑘, 𝚺𝑘) ⋅ 𝜋𝑘]

in order to see whether it has converged. (Alternatively, one can track the convergence of the
parameters after step 3.) If the convergence criteria are not satisfied go to step 2.
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After each iteration of the EM algorithm the log likelihood of the training data, log Pr({x𝑛} ∣ 𝜃), increases
(meaning that the parameter estimates are improving).

Mixtures of Exponential Family Distributions: We have calculated the M-step parameter updates for
clustering using a mixture of Gaussians model. The solution ends up being weighted versions of the
typical maximum-likelihood parameter estimates for 𝝁𝑘 and 𝚺𝑘. Here’s a conjecture
Conjecture. For a mixture model defined using an distribution from the exponential family, the parameter
updates in theM-step of the EM algorithmwill take the form of weighted averages of the sample estimates of
these parameters.

Here’s the outline of a proof.

Proof. If we consider a distribution in the very general exponential family, we can define

Pr(x ∣ 𝑧 = 𝑘) = 𝑓(x ∣ 𝜼𝑘) = ℎ(x) exp (𝜼T
𝑘𝑇 (x) − 𝐴(𝜼𝑘)) (8)

where 𝜼𝑘 are the so-called “natural parameters” of the distribution 𝑓(x) for component 𝑘. The typical
parameters that we think of may not be the natural ones, but can be simply derived from them. The
functions ℎ(), 𝑇 (), and 𝐴() are determined by the type of distribution. If we have some data {x𝑛}, for
a general exponential family distribution, the maximum likelihood estimates for the natural parameters
are the solution to the equation

𝜕
𝜕𝜼𝐴(𝜼) =

∑𝑁
𝑛=1 𝑇 (x𝑛)

𝑁 .

So now let’s consider our mixture model.

𝜕ℒ
𝜕𝜼𝑘

=
𝑁

∑
𝑛=1

1
∑𝐾

𝑗=1 𝑓(x ∣ 𝜼𝑗)
⋅ 𝜋𝑘 ⋅ ( 𝜕

𝜕𝜼𝑘
𝑓(x ∣ 𝜼𝑘)) (9)

From (8), we can see that
𝜕

𝜕𝜼𝑓(x ∣ 𝜼) = 𝑓(x) (𝑇 (x) − 𝜕
𝜕𝜼𝐴(𝜼))

Plugging this in, we have

𝜕ℒ
𝜕𝜼𝑘

=
𝑁

∑
𝑛=1

𝛾𝑛𝑘 (𝑇 (x) − 𝜕
𝜕𝜼𝑘

𝐴(𝜼𝑘)) = 0 (10)

⟹ 𝜕
𝜕𝜼𝑘

𝐴(𝜼𝑘) = 1
𝑁𝑘

𝑁
∑
𝑛=1

𝛾𝑛𝑘𝑇 (x). (11)

Notice that this has the same form as the generalmaximum likelihood parameter estimate, but weighted
by the responsibilities 𝛾𝑛𝑘.

B. Relating EM for a Guassian Mixture Model to Classification

During the training phase, the goal for both a Gaussian Mixture Model (GMM) and a Gaussian Classifica-
tion Model is to estimate the model parameters from the training data.

Key Difference: In Classification, the class labels are known, whereas in a GMM (or any Clustering prob-
lem), the class labels are not known. When we solved for the maximum likelihood parameter estimates
in the Classification model, we found closed-form solutions:

6
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𝜋𝑘 = 𝑁𝑘
𝑁 , where 𝑁𝑘 = ∑

𝑛∈𝐶𝑘

1 (12)

𝝁𝑘 = 1
𝑁𝑘

∑
𝑛∈𝐶𝑘

x𝑛 (13)

𝚺𝑘 = 1
𝑁𝑘

∑
𝑛∈𝐶𝑘

(x𝑛 − 𝝁𝑘)(x𝑛 − 𝝁𝑘)T (14)

When we do Clustering using a GMM, we don’t have labels – we don’t know what class training datum
x𝑛 is in (i.e., whether 𝑛 ∈ 𝐶𝑘). So we have a chicken-egg problem:

— If we knew the labels for the training data, then we could calculate ML parameters using (14).

— Conversely, if we knew the model parameters, then we could calculate Pr(𝐶𝑘 ∣ x𝑛) and assign x𝑛
to a class, using, for example, the maximum a posteriori rule (i.e., argmax Pr(𝐶𝑘 ∣ x𝑛)).

Using the EM algorithm, we can “bootstrap” our way out of this problem:

Summary of EM Algorithm for Clustering

1. Initialize model parameters

2. E-step: Estimate the class labels given the current estimates of the model parameters.

3. M-step: Estimate the model parameters given the current estimates of the class labels (us-
ing the distribution over classes rather than hard assignments).

4. Go to step 2: until convergence.

So to conclude the comparison, in Clustering with a GMM, the training phase uses the EM algorithm in
which

— The E-step reminds us of the test phase in Classification.

— The M-step reminds us of the training phase in Classification.

In Clustering with a GMM, the test phase (cluster assignment for test or validation data) will typically
involve running a single E-step on the test data (i.e., without iteration). Note: As the number of clusters
is a hyper parameter for a GMM, this is exactly the sort of situation where we might split our test data
into two groups, one “test” for testing different values of the number of clusters, and one “validation” for
measuring the final performance (e.g., for comparison to some other algorithm).

C. The EM Algorithm in General

C.1 Motivation

What is themotivation of the EM algorithm in general? Imagine that you have a model that you’d like to fit
to your training data. If the model has latent variables (which are ubiquitous in the case of neural signal
processing), the EM algorithm provides a recipe for fitting the model. Because of this generality, the EM
algorithm is among the most important and widely-used tools in machine learning. We will see it again
at least two more times in this course!

7
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C.2 Decomposition of the data likelihood

Let X denote all the observed variables (i.e., training data observations).

Z denote all the latent variables.

𝜽 denote all the model parameters.

Goal: Maximize Pr(X ∣ 𝜽) with respect to 𝜽.

Note: Normally, when we write down a latent variable model for our data, we describe two distributions,
Pr(Z ∣ X, 𝜽) and Pr(Z). See, for example how we started our Gaussian Mixture model for clustering with
equations (1) and (2). EM uses this model description to maximize the data likelihood, Pr(X ∣ 𝜽). In
principle one could directly maximize the data likelihood without reference to the latent variables, but
this quickly becomes unwieldy.

Our analysis of the EM algorithmbegins by considering an arbitrary distribution over the latent variables,
𝑞(Z).For any choice of 𝑞(𝑧), we can decomponse the data likelihood, Pr(X ∣ 𝜽), into a sum of two terms:

log Pr(X ∣ 𝜽) = ℒ(𝑞, 𝜽) + KL(𝑞 ‖ 𝑝Z∣X) (15)

where

ℒ(𝑞, 𝜽) = ∑
Z

𝑞(Z) log Pr(X,Z ∣ 𝜽)
𝑞(Z) (16)

KL(𝑞 ‖ 𝑝Z∣X) = − ∑
Z

𝑞(Z) log Pr(Z ∣ X, 𝜽)
𝑞(Z) (17)

— ℒ(𝑞, 𝜽) is a scalar that depends only on the values of the parameters, 𝜽 and the choice of 𝑞(Z),
because X are observations and the latent variables, Z, are integrated out.

— KL(𝑞 ‖ 𝑝Z∣X) is the Kullback- Leibler divergence between 𝑞(Z) and Pr(Z ∣ X, 𝜽).
— We’ve written these terms as sums over the latent variables – this is shorthand for a sum or integral

depending on whether the latent variables are discrete (as in the GMM) or continuous.

Aside: What is a KL divergence? The KL divergence is a scalarmeasure of the distance between prob-
ability distributions. In general, it’s defined as

KL(𝑞 ‖ 𝑝) = − ∑
𝑣

𝑞(𝑣) log 𝑝(𝑣)
𝑞(𝑣)

Let’s do a simple example

8
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1 2 3
v

1
3

2
3

p(
v
)

1 2 3
v

1
4

1
2

3
4

q(
v
)

KL(𝑞 ‖ 𝑝) = − (𝑞(1) log 𝑝(1)
𝑞(1) + 𝑞(2) log 𝑝(2)

𝑞(2) + 𝑞(3) log 𝑝(3)
𝑞(3))

= − (1
2 log

1
3
1
2

+ 1
4 log

1
3
1
4

+ 1
4 log

1
3
1
4

) = − (1
2 log

2
3 + 1

2 log
4
3)

= − (log
2
3 + 1

2 log 2) = − (3
2 log 2 − log 3) = −0.0589

Facts about the KL divergence
KL(𝑝 ‖ 𝑝) = − ∑

𝑣
𝑝(𝑣)

�
�

�
��>

0
log

𝑝(𝑣)
𝑝(𝑣) = 0.

KL(𝑞 ‖ 𝑝) ≥ 0 for any 𝑝 and 𝑞.
KL(𝑞 ‖ 𝑝) = 0 if and only if 𝑝 = 𝑞.

With the KL divergence defined, let’s verify (15).

ℒ(𝑞, 𝜽) = ∑
Z

𝑞(Z) log Pr(X,Z ∣ 𝜽)
𝑞(Z)

= ∑
Z

𝑞(Z) log Pr(Z ∣ X, 𝜽) Pr(X ∣ 𝜽)
𝑞(Z)

= ∑
Z

𝑞(Z) log Pr(Z ∣ X, 𝜽)
𝑞(Z) + ∑

Z

𝑞(Z) log Pr(X ∣ 𝜽)

= − KL(𝑞 ‖ 𝑝Z∣X) + log Pr(X ∣ 𝜽)
�
�

�
��>

1
∑
Z

𝑞(Z)

⟹ log Pr(X ∣ 𝜽) = ℒ(𝑞, 𝜽) + KL(𝑞 ‖ 𝑝Z∣X)//

— Notice that KL(𝑞 ‖ 𝑝Z∣X) ≥ 0 with equality only when our arbitrary 𝑞(Z) = Pr(Z ∣ X, 𝜽).
— Thus, log Pr(X ∣ 𝜽) ≥ ℒ(𝑞, 𝜽), meaning that ℒ(𝑞, 𝜽) is a lower bound for log Pr(X ∣ 𝜽).
— The bound is tight when 𝑞(Z) is chosen to be Pr(Z ∣ X, 𝜽).

Here’s the picture to have in mind (PRML, Ch. 9, Figure 11):
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ln p(X|θ)L(q, θ)

KL(q||p)

C.3 The EM algorithm

Goal: Maximize log Pr(X ∣ 𝜽) w.r.t. 𝜽.
Approach: Iteratively maximize the lower bound ℒ(𝑞, 𝜽) w.r.t. 𝑞() and 𝜽.

E-step: Maximize ℒ(𝑞, 𝜽)w.r.t. 𝑞() while keeping 𝜽 fixed

M-step: Maximize ℒ(𝑞, 𝜽)w.r.t. 𝜽 while keeping 𝑞() fixed

E-step

With fixed 𝜽, ℒ(𝑞, 𝜽) is maximized when KL(𝑞 ‖ 𝑝Z∣X) = 0, corresponding to 𝑞(Z) = Pr(Z ∣ X, 𝜽).

ln p(X|θold)L(q, θold)

KL(q||p) = 0

M-step

ℒ(𝑞, 𝜽) = ∑
Z

𝑞(Z) log Pr(X,Z ∣ 𝜽) −
no 𝜽 dependence
⏞⏞⏞⏞⏞⏞⏞∑
Z

𝑞(Z) log 𝑞(Z)

With fixed 𝑞(), maximizing ℒ(𝑞, 𝜽) is equivalent to maximizing

∑
Z

𝑞(Z) log Pr(X,X ∣ 𝜽) ≡ E𝑞[log Pr(X,X ∣ 𝜽)].

We refer to E𝑞[log Pr(X,X ∣ 𝜽)] as the “expected log joint distribution”.

The picture now is that we increase our total data likelihood by picking the best parameters.
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ln p(X|θnew)L(q, θnew)

KL(q||p)

— Because ℒ(𝑞, 𝜽) is a lower bound on log Pr(X ∣ 𝜽), log Pr(X ∣ 𝜽) must increase by at least as much
as ℒ(𝑞, 𝜽).

— Its “as least as much” because now there will be a nonzero KL(𝑞 ‖ 𝑝) because 𝑝 = Pr(Z ∣ x, 𝜽)
changes if the parameters change.

Looking at the last twopictures, we see that log Pr(X ∣ 𝜽) is guaranteednot to decrease each EM iteration.
Thus, the EM algorithm is guaranteed to converge to a local maximum. Here is a schematic of what the E
and M steps of the iteration might look like as a function of a parameter:

θold θnew

L (q, θ)

ln p(X|θ)

The first E-step (blue) makes the lower bound tight, and then the first M-step finds the peak of this distri-
bution. The next E-step (green) makes the new bound tight, etc.

When we run the EM iteration, we need to check for convergence after each step we can plot Pr(x ∣ 𝜽) at
each time step to yield a “learning curve”, which will be non-decreasing each timestep.
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