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A Exponential Distribution
A random variable 𝑇 is said to be exponentially distributed with rate 𝜆 > 0 if its probability density
function (PDF) is

𝑓𝑇(𝑡) =
⎧{
⎨{⎩

𝜆𝑒−𝜆𝑡 if 𝑡 ≥ 0
0 if 𝑡 ≤ 0.

(1)

As a shorthand, we can write 𝑇 ∼ exp(𝜆).

A peak ahead: The time between two consecutive spikes (a.k.a. the inter-spike interval or ISI) can be
modeled by an exponential distribution.
Alternatively, we can describe 𝑇 in terms of its cumulative distribution function (CDF).

𝐹𝑇(𝑡) = Pr(𝑇 ≤ 𝑡) =
⎧{
⎨{⎩

1 − 𝑒−𝜆𝑡 if 𝑡 ≥ 0
0 if 𝑡 ≤ 0.

(2)

Note that the PDF and CDF (of any random variable) are related in the following way:

𝑓𝑇(𝑡) = d𝐹𝑇(𝑡)
d𝑡 𝐹𝑇(𝑡) = ∫

𝑡

−∞
𝑓𝑇(𝑡) d𝑡 (3)

A.1 Mean and variance of the exponential

E[𝑇] = ∫ 𝑡𝑓𝑇(𝑡)d𝑡

= ∫
∞

0
𝑡 𝜆𝑒−𝜆𝑡 d𝑡

(4)
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Integrating by parts; let 𝑢 = 𝑡 and d𝑣 = 𝜆𝑒−𝜆𝑡, so d𝑢 = d𝑡 and 𝑣 = −𝑒−𝜆𝑡.

E[𝑇] = 𝑢𝑣|∞0 − ∫
∞

0
𝑣𝑑𝑢

= −𝑡 𝑒−𝜆𝑡|∞0 + ∫
∞

0
𝑒−𝜆𝑡 d𝑡

= 0 − 0 + [− 1
𝜆𝑒−𝜆𝑡]

∞

0

= 1
𝜆

(5)

E[𝑇2] = ∫ 𝑡2𝑓𝑇(𝑡)d𝑡

= ∫
∞

0
𝑡2 𝜆𝑒−𝜆𝑡 d𝑡

(6)

Integrating by parts; let 𝑢 = 𝑡2 and d𝑣 = 𝜆𝑒−𝜆𝑡, so d𝑢 = 2𝑡 d𝑡 and 𝑣 = −𝑒−𝜆𝑡.

E[𝑇2] = 𝑢𝑣|∞0 − ∫
∞

0
𝑣𝑑𝑢

= −𝑡2 𝑒−𝜆𝑡|∞0 + ∫
∞

0
2𝑡𝑒−𝜆𝑡 d𝑡

= 0 − 0 + ∫
∞

0
2𝑡𝑒−𝜆𝑡 d𝑡

= 2
𝜆 ∫

∞

0
𝜆𝑡𝑒−𝜆𝑡 d𝑡

= 2
𝜆2

(7)

and

var(𝑇) = E(𝑇2) − (𝐸[𝑇])2 = 1
𝜆2 (8)

A.2 Memoryless property of exponential random variables
In words: Say that the waiting time for a bus to arrive is exponentially distributed. If I’ve been waiting for
𝑡 seconds, then the probability that I must wait 𝑠 more seconds is the same as if I hadn’t waited at all.
With math:

Pr (𝑇 > 𝑡 + 𝑠|𝑇 > 𝑡) = Pr (𝑇 > 𝑠) (9)

To show this,

Pr (𝑇 > 𝑡 + 𝑠|𝑇 > 𝑡) = Pr (𝑇 > 𝑡 + 𝑠)
Pr (𝑇 > 𝑡) (10)

Intuition: Conditioning the exponential is like starting at a point away from zero on the x axis of the PDF.
Turning that new thing into a distribution implies renormalizing, but because of an exponential’s shape,
that stretching turns it into exactly the same thing as it was before.

B Defining the Poisson process
B.1 Constructing a Poisson process
Let 𝑡1, 𝑡2, … be independent exponential random variables with parameter 𝜆. Let 𝑇𝑛 = 𝑡1 + 𝑡2 + … + 𝑡𝑛
for 𝑛 ≥ 1, where 𝑇0 = 0. Define 𝑁(𝑠) = max{𝑛 ∶ 𝑇𝑛 ≤ 𝑠}. 𝑁(𝑠) is a Poisson process.
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If a Poisson process is used to model a spie train, then:

— 𝑡𝑛 is the 𝑛th interspike interval (ISI).

— 𝑇𝑛 is the time at which the 𝑛th spike occurs.

— 𝑁(𝑠) is the number of spikes by time 𝑠.
B.2 Properties of the Poisson process
Why is 𝑁(𝑠) called a Poisson process rather than an exponential process?

Property 1: 𝑁(𝑠) has a Poisson distribution with mean 𝜆𝑠.

First, recognize that 𝑁(𝑠) = 𝑛 iff 𝑇𝑛 ≤ 𝑠 < 𝑇𝑛+1. In other words, the 𝑛th spike occurs before time 𝑠 and
the (𝑛 + 1)th spike occurs after time 𝑠.

Pr (𝑁(𝑠) = 𝑛) = ∫
𝑠

0
Pr (𝑇𝑛+1 > 𝑠|𝑇𝑛 = 𝑡) 𝑓𝑇𝑛

(𝑡)d𝑡

= ∫
𝑠

0
Pr (𝑡𝑛+1 > 𝑠 − 𝑡) 𝑓𝑇𝑛

(𝑡)d𝑡

= ∫
𝑠

0
𝑒−𝜆(𝑠−𝑡)𝑓𝑇𝑛

(𝑡)d𝑡

Recall that summing independent random variables implies convolving their PDF’s. If we take Fourier
transforms of the PDF’s, then we can multiply rather than convolve.

𝔉{𝑓𝑇𝑛
} =

𝑛
∏
𝑖=1

𝔉{𝑓𝑇𝑖
}

= [𝔉{𝜆𝑒−𝜆𝑡𝑢(𝑡)}]𝑛

= [ 𝜆
𝜆 + 𝚥𝜔]

𝑛

Table of Fourier Transforms

𝑒−𝑎𝑡𝑢(𝑡) 𝔉−→ 1
𝑎 + 𝚥𝜔

𝑡𝑛𝑒−𝑎𝑡𝑢(𝑡) 𝔉−→ 𝑛!
(𝑎 + 𝚥𝜔)𝑛+1

Taking the inverse transforms of both sides,

𝑓𝑇𝑛
(𝑡) = 𝜆𝑛

(𝑛 − 1)! ⋅ 𝑡𝑛−1𝑒−𝜆𝑡𝑢(𝑡)

= 𝜆𝑒−𝜆𝑡 (𝜆𝑡)𝑛−1

(𝑛 − 1)! for 𝑡 ≥ 0
(11)
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This is called the Erlang distributionwhich is a special case of the gamma distribution. This will appear
again when we try to model refractory periods.

Pr (𝑁(𝑠) = 𝑛) = ∫
𝑠

0
𝑒−𝜆(𝑠−𝑡)𝑓𝑇𝑛

(𝑡)d𝑡

= ∫
𝑠

0
𝑒−𝜆(𝑠−𝑡)𝜆𝑒−𝜆𝑡 (𝜆𝑡)𝑛−1

(𝑛 − 1)! d𝑡

= 𝜆𝑛

(𝑛 − 1)!𝑒
−𝜆𝑠 ∫

𝑠

0
𝑡𝑛−1 d𝑡

= 𝜆𝑛

(𝑛 − 1)!𝑒
−𝜆𝑠 [𝑡𝑛

𝑛 ]
𝑠

0

= 𝑒−𝜆𝑠 (𝜆𝑠)𝑛

𝑛! = Poisson(𝜆𝑠)

What does a Poisson distribution look like?

For smaller (𝜆𝑠), the exponential term dominates. For larger (𝜆𝑠), the polynomial term initially domi-
nates.
What are the mean and variance of the Poisson distribution? First the mean:

E [𝑁(𝑠)] =
∞
∑
𝑛=0

𝑛 ⋅ Pr (𝑁(𝑠) = 𝑛)

=
∞
∑
𝑛=1

𝑛 ⋅ 𝑒−𝜆𝑠 (𝜆𝑠)𝑛

𝑛!

= 𝜆𝑠
∞
∑
𝑛=1

𝑒−𝜆𝑠 (𝜆𝑠)𝑛−1

(𝑛 − 1)!

= 𝜆𝑠

(12)

For the variance, we can use a trick.

E [𝑁(𝑠) (𝑁(𝑠) − 1)] =
∞
∑
𝑛=0

𝑛(𝑛 − 1) ⋅ Pr (𝑁(𝑠) = 𝑛)

=
∞
∑
𝑛=2

𝑛(𝑛 − 1) ⋅ 𝑒−𝜆𝑠 (𝜆𝑠)𝑛

𝑛!

= (𝜆𝑠)2 ∑
𝑛=2

∞𝑒−𝜆𝑠 (𝜆𝑠)𝑛−2

(𝑛 − 2)!
= (𝜆𝑠)2.

(13)
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var [𝑁(𝑠)] = E [𝑁(𝑠)2] − (E [𝑁(𝑠)])2

= E [𝑁(𝑠) (𝑁(𝑠) − 1)] + E [𝑁(𝑠)] − (E [𝑁(𝑠)])2

= (𝜆𝑠)2 + 𝜆𝑠 − (𝜆𝑠)2

= 𝜆𝑠

(14)

Property 2: 𝑁(𝑡 + 𝑠) − 𝑁(𝑠), 𝑡 ≥ 0, ∼ Poisson(𝜆𝑡) and independent of 𝑁(𝑟), 0 ≤ 𝑟 ≤ 𝑠.

In otherwords, if you look forward fromany time s, that is itself a Poissonprocess independentof anything
that’s already happened. This picture provides the intuition:

Looking forward from time 𝑠, the time until the first spike (at 𝑇4) is distributed as an exponential with
parameter 𝜆 and independent of anything that came before it, by thememoryless property of the expo-
nential. Subsequent ISI’s (𝑡5, 𝑡6, …) are ∼ exp(𝜆) and independent of anything before time 𝑠.

Property 3: 𝑁(𝑡) has independent increments.

If 𝑠0 < 𝑠1 < … < 𝑠𝑛, then
𝑁(𝑠1) − 𝑁(𝑠0), 𝑁(𝑠2) − 𝑁(𝑠1), … , 𝑁(𝑠𝑛) − 𝑁(𝑠𝑛−1) are independent.

In other words, if you take spike counts in non-overlapping windows, the spike counts are independent.

To summarize, if 𝑁(𝑠), 𝑠 ≥ 0 is a Poisson process, then

(i) 𝑁(0) = 0

(ii) 𝑁(𝑡 + 𝑠) − 𝑁(𝑠) ∼ Poisson(𝜆𝑡)

(iii) 𝑁(𝑡) has indepdent increments

Conversely if i, ii, and iii hold, then 𝑁(𝑠), 𝑠 ≥ 0 is a Poisson process.
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B.3 Another view of the Poisson process
So far, we have derived the Poisson process using i.i.d. exponential ISI’s. Another very useful way of
thinking about the Poisson process is using the Bernoulli process. The Poisson process is the continuous-
time limit of the Bernoulli process, which is defined in discrete time.
Bernoulli Process
At each time step, flip a coin to decide whether the neuron spikes (1) or not (0). The coin flips are inde-
pendent of each other.

At the 𝑖th time step,

𝑋𝑖 ∼ Bernoulli(𝑝) i.i.d.

𝑋𝑖 =
⎧{
⎨{⎩

1 with probability 𝑝
0 with probability (1 − 𝑝)

Let 𝑆𝑛 be the number of spikes up to and including the 𝑛th time step.

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑋𝑖

𝑆𝑛 ∼ Binomial(𝑛, 𝑝)

Pr(𝑆𝑛 = 𝑘) = (𝑛
𝑘)𝑝𝑘 (1 − 𝑝)𝑛−𝑘

E[𝑆𝑛] = 𝑛𝑝 ⇒ We expect to see 𝑛𝑝 spikes in 𝑛 time steps.

Without proof here, as 𝑛 → ∞ and 𝑝 → 0, the Bernoulli process becomes the Poisson process, where
𝑛𝑝 = 𝜆𝑠. So the Bernoulli process provides an intuitive way to think about the Poisson process.
We can also go in the other direction and consider the probability that a Poisson process gives a spike in
a small time window of duration 𝛿. The number of spikes in this window is ∼ Poisson(𝜆𝛿).

Pr (0 spikes in [𝑡, 𝑡 + 𝛿]) = 𝑒−𝜆𝛿 = 1 − 𝜆𝛿 + O(𝛿2)
Pr (1 spikes in [𝑡, 𝑡 + 𝛿]) = 𝑒−𝜆𝛿 ⋅ 𝜆𝛿 = 𝜆𝛿 − O(𝛿2)

Pr (> 1 spikes in [𝑡, 𝑡 + 𝛿]) = 𝑒−𝜆𝛿 = O(𝛿2)

If 𝛿 is small, O(𝛿2) terms → 0. Thus, whether or not a neuron spikes in this small window can be deter-
mined with a coin flip, where the probability of a spike is 𝜆𝛿.
B.4 Thinning
Suppose 𝑁(𝑠) is a Poisson process with rate 𝜆. Each time a spike occurs, a coin is flipped. If the coin
comes up heads (with probability 𝑝), the spike is assigned to output stream 1. Else, the spike is assigned
to output stream 2. The two output streams are each an independent Poisson process with rates 𝜆𝑝 and
𝜆(1 − 𝑝), respectively.
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B.5 Superposition
Suppose 𝑁1(𝑠) and 𝑁2(𝑠) are independent Poisson processes with rates 𝜆1 and 𝜆2, respectively. Then
𝑁1(𝑠) + 𝑁2(𝑠) is a Poisson process with rate 𝜆1 + 𝜆2.

C Inhomogeneous Poisson Processes
So far, we’ve considered a Poisson process that is homogeneous – it’s rate does not change as a function
of time. However, the firing rates of neurons typically do changewith time. Tomodel the time-dependent
activity of neurons, we need a non-stationary process, such as the inhomogeneous Poisson process.

Definition 𝑁(𝑠), 𝑠 ≥ 0 is an inhomogeneous Poisson process with rate 𝜆(𝑟) if

(i) 𝑁(0) = 0

(ii) 𝑁(𝑡 + 𝑠) − 𝑁(𝑠) ∼ Poisson(∫𝑡+𝑠
𝑠 𝜆(𝑟)d𝑟)

(iii) 𝑁(𝑡) has indepdent increments

Comparing with the previous definition of a homogeneous Poisson process, the only difference is that
the Poisson mean is now ∫𝑡+𝑠

𝑠 𝜆(𝑟)d𝑟 rather than 𝜆𝑡.
Note that if 𝜆(𝑟) is flat, then the two definitions are equivalent!

For an inhomogeneous Poisson process, the ISI’s are no longer exponentially distributed or independent.
Let’s show this:
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Let 𝜇(𝑡) = ∫
𝑡

0
𝜆(𝑟)d𝑟

Pr(𝑡1 > 𝑡) = Pr (𝑁(𝑡) = 0) = 𝑒− ∫𝑡
0 𝜆(𝑟)d𝑟 = 𝑒−𝜇(𝑡)

𝑓𝑡1
= − d

d𝑡 Pr(𝑡1 > 𝑡) = 𝜆(𝑡)𝑒−𝜇(𝑡), which is not exponential!

Now, look forward in time from 𝑇1.

Pr(𝑡2 > 𝑠|𝑡1 = 𝑡) = Pr (𝑁(𝑡 + 𝑠) − 𝑁(𝑡) = 0)

= 𝑒− ∫𝑡+𝑠
𝑡 𝜆(𝑟)d𝑟

= 𝑒−(𝜇(𝑠+𝑡)−𝜇(𝑡))

𝑓𝑡2|𝑡1
(𝑠) = − d

d𝑠 Pr(𝑡𝑠 > 𝑠|𝑡1 = 𝑡) = 𝜆(𝑠 + 𝑡)𝑒−(𝜇(𝑠+𝑡)−𝜇(𝑡))

Since 𝑡2 depends on 𝑡1, the ISIs are not independent.
The joint distribution of ISI’s is

𝑓𝑡1,𝑡2
(𝑡, 𝑠) = 𝑓𝑡2|𝑡1

(𝑠) ⋅ 𝑓𝑡1
(𝑡)

= 𝜆(𝑡)𝜆(𝑠 + 𝑡)𝑒−𝜇(𝑠+𝑡).

Changing variables from ISI’s to spike times (i.e., 𝜈1 = 𝑡, 𝜈2 = 𝑠 + 𝑡),

𝑓𝑇1,𝑇2
(𝜈1, 𝜈2) = 𝜆(𝜈1)𝜆(𝜈2)𝑒−𝜇(𝜈2).

For more than two spikes, we get

𝑓𝑇1,…,𝑇𝑛
(𝜈1, … , 𝜈𝑛) = 𝜆(𝜈1) … 𝜆(𝜈𝑛)𝑒−𝜇(𝜈𝑛) . (15)

Sanity check: Whatdoes the spike trainprobability density 15 reducedown to for ahomogeneousPoisson
process?
For a homogeneous Poisson process, 𝜆(𝑟) = 𝜆0∀𝑟. So,

𝑓𝑇1,…,𝑇𝑛
(𝜈1, … , 𝜈𝑛) = 𝜆𝑛

0𝑒−𝜆0𝜈𝑛 . (16)

Note that this does not depend on the spike times 𝜈1, … , 𝜈𝑛−1. Given that 𝑛 spikes occured and the time
of the last spike 𝜈𝑛, all spike trains have the sam probability. Equation 16 could also have been obtained
by multiplying exponential distributions, since ISI’s are i.i.d.

𝑓𝑡1,…,𝑡𝑛
(𝑢1, … , 𝑢𝑛) = ∏

𝑖=1
𝑛𝜆0𝑒−𝜆0𝑢𝑖

= 𝜆𝑛
0𝑒−𝜆0(∑𝑛

𝑖=1 𝑢𝑖)

where 𝜈𝑛 = ∑𝑛
𝑖=1 𝑢𝑖.
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D Generating Poisson processes

D.1 Homogeneous Poisson process with rate 𝜆
Method 0 (Note - this is the most inefficient method!)

— Pick a bin size Δ𝑡 such that (1 − (1 + 𝜆Δ𝑡)𝑒−𝜆∆𝑡) ≈ 0 (i.e., the probability thatmore than one spike
is emitted in a bin is very small).

— Generate a vector of Uniform([01]) random variables, 𝑈1, … , 𝑈𝑀, where 𝑀 = ⌈ 𝒯
∆𝑡⌉. (In Matlab

use “rand”.)

— Emit a spike in bin 𝑚 if 𝑈𝑚 < 𝜆Δ𝑡, with corresponding spike time 𝑇𝑘 = 𝑚Δ𝑡.
Method 1

— Generate i.i.d. exponential random variables 𝑡1, 𝑡2, … with parameter 𝜆. (In Matlab use “exprnd”.)

— The spike times are 𝑇𝑛 = ∑𝑛
𝑖=1 𝑡𝑖

— If 𝑇𝑛 > 𝒯 , stop

Method 2

— Draw 𝑁 ∼ Poisson(𝜆𝒯 ), the number of spikes on the interval [0, 𝒯 ]. (In Matlab use “poissrnd”.)

— Draw 𝑇1, … , 𝑇𝑁 ∼ Uniform([0, 𝒯 ). (In Matlab use “rand”.) The 𝑇1, … , 𝑇𝑛 are the spike times.
(Cool!)

Why does Method 2 work?
The intuition is that a spike should not bemore likely to occur at one time compared to another time
(think of a Bernoulli process). More formally, Method 2 is based on the following (not-proved-here)
theorem:

Theorem: If we conditionon 𝑁(𝒯 ) = 𝑀, then the set of spike times {𝑇1, … , 𝑇𝑀} has the same
distribution as {𝑈1, … , 𝑈𝑀}, where 𝑈1, … , 𝑈𝑀 ∼ Uniform ([0, 𝒯 ]) i.i.d.

D.2 Inhomogeneous Poisson process with rate 𝜆(𝑡)
Method 0 See Method 0 above.
Method 1

— Let 𝜆max = max
𝑡

𝜆(𝑡). Generate a homogeneous Poisson process with rate 𝜆max using one of the

methods above.

— For 𝑛 = 1, … , 𝑁
Draw 𝑈 ∼ Uniform([0, 1])
If 𝑈 > 𝜆(𝑇𝑛)

𝜆max
reject the spike at 𝑇𝑛

Else, retain the spike at 𝑇𝑛.

⎫}}
⎬}}⎭

thinning
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The spikes that are retained at the end of this procedure represent an inhomogeneous Poisson process
with rate 𝜆(𝑡).
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